
+1-888-690-2424 | entrust.com

Why Developers Need to Digitally
Sign Code and Applications

CODE SIGNING

http://www.entrust.com

Table of contents

Self-Signed Versus Publicly
Trusted Code Signing
Certificates
Page 10

What is Time-Stamping?
Page 9

Code Installation Decisions
Page 7

How to Digitally Sign Code
Page 6

Verifying Code Authenticity
Page 5

What is Code Signing?
Page 4

Why Code Sign?
Page 3

Conclusion
Page 15

References
Page 15

Code Signing Certificate
Standards
Page 11

Application Reputation
Page 12

Code Signing: Best Practices
Page 13

Extended Validation (EV)
Code Signing Certificates
Page 12

3

Most mass-market computing devices sold today come with pre-loaded

software, but the software that comes “out of the box” with the device

is not all that will be needed for the full life of the device. Whether for

a personal computer or a mobile device, users will frequently need to

download additional software or applications. In other cases users are

often advised by an application on their device, or the site they are

visiting, that in order to experience or use the offered service they need

to upgrade, patch or augment their current software. Users are asked

to make a spot decision: “Run or Don’t Run,” “Install or Don’t Install”

or “Run or Cancel.”

Why Code
Sign?

Introduction
Code signing is the process of digitally signing executables and scripts

to confirm the identity of the software publisher and guarantee that

the code has not been altered or corrupted since it was signed.

Publicly trusted certification authorities (CAs) confirm signers’ identities

and bind their public key to a code signing certificate. The certificate

is used to support validation of code signatures to a trusted root

certificate in widely distributed applications such as Windows or Java.

CAs and browsers have developed standards to manage and issue code

signing certificates. The standards ensure applications are verified and

code signing specifications meet the latest cryptographic requirements.

This paper discusses how code signing works and the best practices

to perform code signing.

In these situations, “Run/Don’t Run” asks the user whether or not to run

the downloaded code. How does a user decide? How does a user or user

agent (usually a “browser”) know whether or not to trust the software?

The answer is code signing.

To help users determine whether or not they can trust software before

they install it, software publishers can digitally sign their code. A digital

signature verifies who signed the code and that the code has not

been subject to tampering. Digitally signed code, which is backed by

a certificate issued by a CA acting as a trusted third party, is granted

greater reliability than unsigned code. Generally, unsigned code

should not be trusted, as it does not provide any evidence of origin or

file integrity, which means the publisher cannot be held accountable

for errors and the code is subject to tampering.

Armed with the information provided by a digital signature, users can

make a more informed “Run/Don’t Run” decision.

4

Code signing is the process of digitally signing executables and scripts

to confirm the identity of the software author and guarantee that the

code has not been altered or corrupted since it was signed. In order

to sign the code, a software publisher needs to generate a private-

public key pair and submit the public key to a CA, along with a request

to issue a code signing certificate. The CA verifies the identity of the

publisher and authenticates the publisher’s digitally-signed certificate

request. If this vetting and key-verification process is successful, the

CA bundles the identity of the publisher with the public key and signs

the bundle, thus creating the code signing certificate.

Armed with the code signing certificate, the publisher is ready to sign

the code. When the code is signed, several pieces of information are

added to the original file holding the executable code. This bundled

information is used by the software publisher’s users to authenticate

the publisher and check for code-tampering. The entire sequence for

bundling the digitally-signed code takes place as follows:

 O A hash of the code is produced

 – Public-key algorithms are inefficient for signing large objects,

so the code is passed through a hashing algorithm, creating

a fixed-length digest of the file

 – The hash is a cryptographically unique representation of the file

 – The hash can be reproduced only by using the unaltered file and

the hashing algorithm that was used to create the hash

 O The hash is signed using the publisher’s private key

 – The hash is passed through a signing algorithm using the

publisher’s private key as an input

 – Information about the publisher and the CA is drawn from the code

signing certificate and incorporated into the signature

 O The original code, signature and code signing certificate are

bundled together

 – The code signing certificate key is added to the bundle (as the

public key is required to authenticate the code when it is verified)

The code is now ready for distribution and is packaged in a form that

will allow the user to verify for authenticity.

What is Code
Signing?

Code
Code

Certificate

Hash of Code Signed Hash

Signed
Hash

CODE IS HASHED USING

A HASHING ALGORITHM

HASHING IS SIGNED

WITH PRIVATE KEY

HASH IS PACKAGED WITH

THE DATA & CERTIFICATE

5

When a user agent loads the code, it checks the authenticity of the

software using the packaged signer’s public key, signature and the

hash of the file. If the signature is verified successfully, the user agent

accepts the code as valid. If the signature is not successfully verified,

the user agent will react by either warning the user or rejecting the

code, according to the level of security being used.

The signature is verified as follows:

 O Hash is Verified

 – The original code is passed through the hashing algorithm to create

a hash

 – The public key of the publisher is extracted from the bundle and

applied to the signature information; applying the public key

reveals the hash that was calculated when the file was signed

 – The two hashes are compared; if equal, then the code has not

changed and the signature is considered valid

 O Code Signing Certificate is Verified

 – The code signing certificate is checked to ensure it was signed

by a trusted CA

 – The expiry date of the code signing certificate is checked

 – The code signing certificate is checked against the revocation lists

to ensure it is valid

If the hash and the certificate are valid, then the code is considered

valid. As such, it is accepted by the user agent and presented for

installation. If the file is not considered valid, the user agent displays

a warning message.

Verifying Code
Authenticity

Code

Certificate

Code

Hash of Code

Hash of Code

Signed
Hash

Signed Hash

VERIFY HASH WITH PUBLIC

 KEY FROM CERTIFICATE

CODE HASHED USING

HASHING ALGORITHM

Compare hashes,
if equal the signature
is valid=?

6

Various application platforms support code signing and provide

different tools to perform the signing. Here is a list of the more common

code signing types and references to where guides can be found for

each given application.

AdobeAIR

 O Digitally signing an AIR file

Apple Mac OS X Developer Library

 O Code Signing and Application Sandboxing Guide

Firefox XPI

 O Signing an XPI

Java

 O Java Code Signing User Guide (Entrust)

 O How to Sign Applets Using RSA-Signed Certificates (Oracle)

 O Signing Code and Granting it Permissions (Oracle)

Microsoft

 O Authenticode – Entrust Signing Guide

 O Authenticode – Signing and Checking Code with Authenticode

 O Windows Macro and Visual Basic Code Signing – Entrust Signing Guide

 O Microsoft Windows Macro and Visual Basic Signing – Signing a VBA

Project

 O Microsoft Windows Driver Signing – Driver Signing

How to Digitally
Sign Code

http://help.adobe.com/en_US/AIR/1.5/devappsflex/WS5b3ccc516d4fbf351e63e3d118666ade46-7ff0.html
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html
https://developer.mozilla.org/en/Signing_a_XPI
https://www.entrust.com/wp-content/uploads/2013/06/ECS_11_Java_Code_Signing_Guide.pdf
http://download.oracle.com/javase/1.5.0/docs/guide/plugin/developer_guide/rsa_signing.html
http://download.oracle.com/javase/tutorial/security/toolsign/index.html
https://www.entrust.com/wp-content/uploads/2013/06/ECS_11_AuthCode_Signing_Guide.pdf
http://msdn.microsoft.com/en-us/library/ms537364%28v%3DVS.85%29.aspx
https://www.entrust.com/wp-content/uploads/2013/06/ECS_VBA_Signing_Guide.pdf
http://msdn.microsoft.com/en-us/library/aa141471%28v%3Doffice.10%29.aspx
http://msdn.microsoft.com/en-us/library/aa141471%28v%3Doffice.10%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff544865%28v%3Dvs.85%29.aspx

7

The code has been signed, the user has started installation and

verification has taken place. How does the user know whether or not

to accept the code?

Here is a typical code verification security message:

Code
Installation
Decisions

The user must decide if they trust the software based on the

messages above. The statement provides the following:

 O Program Name: “Adobe Flash Player Installer”

 O Publisher Name: Adobe Systems, Incorporated

 O Code Signing Certificate: The user would need to click on the

”Show Details” drop down button, which will display a link to review

the certificate

.exe .exe .exe

8

CODE INSTALLATION DECISIONS

The program name is “Install.exe,” which is not specific enough

to determine what code is being installed. The publisher’s name is

“Unknown,” which means that a public CA did not verify the code

signing certificate. The code may not be harmful, but it was likely

signed with a self-issued code signing certificate. This means the

user cannot trust who signed the code.

There are five simple steps users should take to determine whether

software can be trusted:

1. Check to see if you were planning to install the software.

2. Check the file name to see if it indicates the software you

were planning to install. In this case, the user is installing

Adobe Reader 10, which the name seems to indicate.

3. Check the publisher name to see if it matches who you think wrote

the software. This may be difficult as the software download site

may be different than the publisher’s site.

4. Check the code signing certificate to see if the publisher’s name

is in the certificate.

5. Check to see if the certificate was issued by a publicly trusted CA.

Conversely, here is a dialogue for code that may be untrustworthy:

9

What happens to signed code when the code signing certificate

expires? In many cases, an expired certificate means that the signature

validation will fail and a trust warning will appear in the user agent.

Time-stamping was designed to alleviate this problem. The idea is that

if a user knows the time when the code was signed and the certificate

was confirmed to be valid, then the user will also know the signature

was valid at the time the software was published. Put another way,

time-stamping is similar to a notarized handwritten signature which

includes a third-party’s confirmation of when the document was signed.

The main benefit of time-stamping is that it extends code trust

beyond the validity period of the code signing certificate. The code

stays good as long as the user can run it. Also, the code signing

certificate may be revoked or expire in the future, but the code can

remain trusted.

Please note that with some client software, the code verification may

not be valid after the time-stamp certificate has expired. The new

Minimum Requirements for Code Signing, discussed below, will require

time-stamping authorities (TSAs) to use a time-stamping certificate

with a maximum validity of 135 months that will be renewed every

15 months. As such, expect time-stamp certificates to have a lifetime

of at least 10 years.

Time-stamping the signature is implemented as follows:

 O The signature is sent to the TSA.

 O The TSA adds a time-stamp to the bundled information and

computes a new hash.

 O The TSA signs the new hash with its private key creating a new

bundle of information.

 O The time-stamped bundle, the original bundle (that was sent to the

TSA) and the time-stamp are re-bundled with the original code.

Upon receipt of a time-stamped signature, the following steps are

completed by the user agent for verification (in addition to verification

of the signature on the code itself):

 O The TSA certificate is checked to ensure it was issued from

a trusted root certificate and that its status is valid.

 O The TSA’s public key is applied to the time-stamped signature

block, revealing the hash calculated by the TSA.

 O The validity of the TSA’s public key is verified by checking its

expiry date and consulting revocation lists to ensure that it has

not been revoked.

 O The two hashes are compared. If the hashes are equal,

the time-stamp is considered to be valid.

In the event that the code signing certificate must be revoked due to

a compromise, the revocation will be made dependent on a specific

date. The idea is that code signatures issued before the revocation

date will remain valid and the software should still work.

What is Time-
Stamping?

10

In most cases, software publishers have to sign their code in order to

get it installed on an operating system. Publishers can sign their code

using a self-signed certificate or using a certificate issued by a publicly

trusted CA.

Due to the costs of buying a code signing certificate from a publicly

trusted CA, some publishers may decide to try a self-signed

certificate, but there are differences between the two types

of certificates that should be considered.

Self-Signed Certificate

Issuer provides their own identity, which is not published as part

of the code verification security message

Issuer provides their own policy and quality

Signatures will provide a warning indicating that the software

was created by an “Unknown Publisher”

Compromised certificates cannot be revoked and could harm

software users

To ensure user trust and code longevity, it is recommended that

software publishers use a certificate issued from a publicly trusted CA.

Certificates Issued from Publicly Trusted CA

CA performs identity verification, which is displayed in a code

verification security message

CA issues certificates in accordance with the industry policy

and quality

Signatures will clearly identify the publisher’s name

Compromised certificates can be revoked, and if time-stamping

was used, code signed before revocation will remain trusted

Self-Signed
Versus Publicly
Trusted Code
Signing
Certificates

11

Code Signing
Certificate
Standards

Through 2016, there are only requirements for the management and

issuance of EV code signing certificates. A new standard for non-EV

code signing certificates were implemented in February 2017. This

standard is required by Microsoft, so all publicly trusted CAs will issue

certificates to meet the requirements.

Minimum Requirements for Code Signing

The minimum requirements for code signing were not published by

the CA/Browser Forum, but many of the requirements are from their

Baseline Requirements. For code signing the minimum requirements

also address other items such as:

 O Publisher identity: Common name is the publisher’s legal name,

where the Organization name can also be the publisher’s legal

name or a DBA name.

 O Minimum key size: 2048-bit RSA or ECC curves P-256, P-384

or P-521

 O Validity period: Maximum validity period is 39 months.

 O High Risk Requests: CAs should check databases to ensure

known publishers of suspect code are not issued a code signing

certificate.

 O Private Key protection: Due to suspect code being signed with

compromised keys, private keys are required to be encrypted on

hardware or kept on a device separate from the host of the signing

software function.

 O Takeover Attack: Publishers’ with history of a takeover attack will

require a higher level of private key protection

 O Certificate revocation: Specific revocation and processes have

been established which include revocation requests from an

application software supplier (e.g., Microsoft)

 O Time-stamping: Certification authority, time-stamp certificates and

time-stamp authority (TSA) requirements have been defined.

12

EV code signing certificates have two distinct advantages over

certificates issued to the Minimum Requirements for Code

Signing standard:

 O Identity and authorization of the publisher must be completed in

accordance with the CA/Browser Forum EV Code Signing Guidelines.

 O Private keys must only be managed in hardware meeting the

requirements of FIPS 140-2 Level 2 or equivalent.

The upside of EV code signing certificates is users know who the

publisher is and reasonable protection has been provided to the private

key to mitigate unauthorized signing. Since EV code signing certificates

are more trusted, this allows developers of verification products to

raise the reputation level of the publisher or the signed code.

Please note that Windows 10 requires drivers submitted for kernel

mode signing to have their submission signed with an EV code

signing certificate.

Extended
Validation
(EV) Code
Signing
Certificates

Application
Reputation

Social-engineering attacks are more common than attacks on security

vulnerabilities. The traditional defense against malware is a URL-based

filter to screen out known malware websites. Microsoft also introduced

a new defense called Application Reputation that is available starting

with SmartScreen Application Reputation.

Application Reputation allows publishers and their applications

to build a positive reputation over time through these principles:

 O Well-known “good” applications have a better reputation than

new applications

 O Well-known “good” publishers have a better reputation than

unknown publishers

 O New applications signed by known “good” publishers can have

a relatively high reputation from first release

Reputation can be built for unsigned and signed applications. Signed

applications can build reputation at twice the rate of those that are

unsigned. Reputation based on signing relies on the identification of the

publisher by a trusted certification authority and the issuance of a code-

signing certificate. Reputation is built by signing ‘good’ applications, but

can be easily lost if the certificate is used to sign malware.

Traditionally, browsers have presented a User Account Control dialogue

box for each application download. SmartScreen® Filter does not

present a User Account Control dialogue if the application has built a

good reputation. The benefit is that applications with good reputations

will be installed without requiring the user to decide if they trust the

software — they simply choose “Save” or “Run.” This update prevents

users from becoming de-sensitized to User Account Control dialog

boxes, and encourages users to make better decisions when these

dialog boxes appear from applications with unknown reputations.

https://blogs.msdn.microsoft.com/ie/2011/05/17/smartscreen-application-reputation-in-ie9/

13

The biggest issue with code signing is the protection of the private

signing key associated with the code signing certificate. If a key is

compromised, the certificate loses trust and value, jeopardizing the

software that you have already signed.

Seven best practices for code signing include:

Minimize access to private keys

 O Allow minimal connections to computers with keys

 O Minimize the number of users who have key access

 O Use physical security controls to reduce access to keys

Protect private keys with cryptographic hardware products

 O Cryptographic hardware does not allow export of the

private key to software where it could be attacked

 O Use a FIPS 140 Level 2-certified product (or better)

Time-stamp code

 O Time-stamping allows code to be verified after the

certificate has expired or been revoked

Understand the difference between test-signing and

release-signing

 O Test-signing private keys and certificates requires less

security access controls than production code signing

private keys and certificates

 O Test-signing certificates can be self-signed or come from

an internal test CA

 O Test certificates must chain to a completely different root

certificate than the root certificate that is used to sign

publicly released products; this precaution helps ensure

that test certificates are trusted only within the intended

test environment

 O Establish a separate test code signing infrastructure

to test-sign pre-release builds of software

1

2

3

4

Code Signing:
Best Practices

14

1010101001
0101010101
0101010110
0100101010
1001010101
0101010101
0101010101
0101010101
0101010101
0010010101
0001010110
1001001100
1010010101

CODE SIGNING: BEST PRACTICES

Authenticate code to be signed

 O Any code that is submitted for signing should be strongly

authenticated before it is signed and released

 O Implement a code signing submission and approval

process to prevent the signing of unapproved or

malicious code

 O Log all code signing activities for auditing and/or

incident-response purposes

Virus scan code before signing

 O Code signing does not confirm the safety or quality of

the code; it confirms the publisher and whether or not the

code has been changed

 O Take care when incorporating code from other sources

 O Implement virus-scanning to help improve the quality

of the released code

Do not over-use any one key (distribute risk with

multiple certificates)

 O If code is found with a security flaw, then publishers may

want to prompt a User Account Control dialogue box to

appear when the code is installed in the future; this can be

done by revoking the code signing certificate so a revoked

prompt will occur

 O If the code with the security flaw was issued before more

good code was issued, then revoking the certificate will

impact the good code as well

 O Changing keys and certificates often will help to avoid

this conflict

7

5

6

15

Code signing is required to install code on many platforms because

it provides assurances of authenticity and origin. When signing code

software publishers have to make decisions to protect their deployed

products, the most important decision one can make is whether or not

to use a trusted CA. The backing of a code signing certificate issued

by a trusted CA is the best way to ensure end-user trust. Self-signed

certificates should only be used for testing, not for production releases.

The second most important decision is whether or not to time-stamp

code. In the event of a compromised key, a time-stamp may ensure

that code is protected even if a certificate needs to be revoked.

The best practices section provides additional important tips for

protecting the code signing private key and the quality of signed code.

Minimum Requirements for Code Signing will increase Internet security

by setting a new bar to protect private keys from compromise. These

requirements also provide a better mechanism to have code signing

certificates revoked to limit the proliferation of malware.

Extended Validation code signing certificates are the best tool

available to establish trust in the security of the private key used

to sign code, and provides a higher assurance of the identity of

the software publisher. Because EV code signing provides better

information about the source of software, some platforms with

malware security filters give EV-signed software better treatment

in user dialog boxes during installation.

Conclusion

CA/Browser Forum EV Code Signing Guidelines,

https://www.cabforum.org/documents.html

Minimum Requirements for the Issuance and Management of Publicly

Trusted Code Signing Certificates, https://casecurity.org/resources/

Microsoft Developer Network – Introduction to Code Signing,

http://msdn.microsoft.com/en-us/library/ms537361.aspx

Microsoft Windows Code-Signing Best Practices,

http://msdn.microsoft.com/en-us/windows/hardware/gg487309.aspx

Microsoft Technet- Deploying Authenticode with Cryptographic

Hardware for Secure Software Publishing,

http://technet.microsoft.com/en-us/library/cc700803.aspx

Microsoft Technet – Kill Bits, http://blogs.technet.com/b/srd/

archive/2008/02/06/the-kill_2d00_bit-faq_3a00_-part-1-of-3.aspx

Microsoft SmartScreen and Extended Validation (EV) Code Signing

Certificates, https://blogs.msdn.com/b/ie/archive/2012/08/14/

microsoft-smartscreen-amp-extended-validation-ev-code-signing-

certificates.aspx

References

https://www.cabforum.org/documents.html
https://casecurity.org/resources/
http://msdn.microsoft.com/en-us/library/ms537361.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg487309.aspx
http://technet.microsoft.com/en-us/library/cc700803.aspx
http://blogs.technet.com/b/srd/archive/2008/02/06/the-kill_2d00_bit-faq_3a00_-part-1-of-3.aspx
http://blogs.technet.com/b/srd/archive/2008/02/06/the-kill_2d00_bit-faq_3a00_-part-1-of-3.aspx
https://blogs.msdn.com/b/ie/archive/2012/08/14/microsoft-smartscreen-amp-extended-validation-ev-code-signing-certificates.aspx
https://blogs.msdn.com/b/ie/archive/2012/08/14/microsoft-smartscreen-amp-extended-validation-ev-code-signing-certificates.aspx
https://blogs.msdn.com/b/ie/archive/2012/08/14/microsoft-smartscreen-amp-extended-validation-ev-code-signing-certificates.aspx

Consumers, citizens and employees increasingly expect anywhere-

anytime experiences — whether they are making purchases, crossing

borders, accessing e-gov services or logging onto corporate networks.

Entrust Datacard offers the trusted identity and secure transaction

technologies that make those experiences reliable and secure.

Solutions range from the physical world of financial cards, passports

and ID cards to the digital realm of authentication, certificates and

secure communications. With more than 2,000 Entrust Datacard

colleagues around the world, and a network of strong global partners,

the company serves customers in 150 countries worldwide.

For more information about Entrust products and services, call

888‑690‑2424, email entrust@entrust.com or visit www.entrust.com.

About Entrust
Datacard

Entrust Datacard and Entrust are trademarks, registered trademarks and/or service marks of Entrust Datacard Corporation in the United States

and/or other countries. Names and logos on sample cards are fictitious. Any similarity to actual names, trademarks or tradenames is coincidental.

©2016 Entrust Datacard Corporation. All rights reserved.

Headquarters

Entrust Datacard

1187 Park Place

Shakopee, MN 55379

USA

30118-2-0117

https://twitter.com/EntrustDatacard
https://www.facebook.com/EntrustSecurity
https://www.linkedin.com/company/8011
https://plus.google.com/+entrust/
http://feeds.feedburner.com/EntrustSecurity
https://www.youtube.com/user/EntrustVideo

	Bookmark 1
	Bookmark 2
	Bookmark 3
	Bookmark 4
	Bookmark 5
	Bookmark 6
	Bookmark 7
	Bookmark 8
	Bookmark 9
	Bookmark 10
	Bookmark 11
	Bookmark 12
	Bookmark 13

	TOC-link-m33:
	TOC-link-m32:
	TOC-link-m31:
	TOC-link-m30:
	TOC-link-m29:
	TOC-link-m28:
	TOC-link-m27:
	TOC-link-m41:
	TOC-link-m42:
	TOC-link-m40:
	TOC-link-m35:
	TOC-link-m36:
	TOC-link-m34:
	Twitter 2:
	Page 16:

	Facebook 2:
	Page 16:

	Linkedin 2:
	Page 16:

	Google 2:
	Page 16:

	RSS 2:
	Page 16:

	Youtube 2:
	Page 16:

