
October 2020

527250-003, Rev. B

Programmer’s Reference

Guide

Windows XPS Driver Software Development Kit

ii

Notice

Please do not attempt to operate or repair this equipment without adequate
training. Any use, operation or repair you perform that is not in accordance
with the information contained in this documentation is at your own risk.

Trademark Acknowledgments

Entrust, Sigma and the hexagon design are trademarks, registered trademarks
and/or service marks of the Entrust Corporation in the United States and other
countries.

Datacard is a registered trademark and service mark of Entrust Corporation in
the United States and other countries.

MasterCard is a registered trademark of MasterCard International Incorporated.

Visa is a registered trademark of Visa International Service Association.

All other product names are the property of their respective owners.

Proprietary Notice

The design and information contained in these materials are protected by US
and international copyright laws.

All drawings and information herein are the property of Entrust Corporation. All
unauthorized use and reproduction is prohibited.

Entrust Corporation
1187 Park Place
Shakopee, MN 55379
Phone: 952-933-1223
Fax: 952-933-7971
www.entrust.com

© 2012–2020 Entrust Corporation. All rights reserved.

iii

Safety
The following basic safety tips are given to ensure safe installation, operation and maintenance of
Datacard® equipment.

• Connect equipment to a grounded power source. Do not defeat or bypass the ground lead.

• Place the equipment on a stable surface (table) and ensure floors in the work area are dry and
non-slip.

• Know the location of equipment branch circuit interrupters or circuit breakers and how to turn
them on and off in case of emergency.

• Know the location of fire extinguishers and how to use them. ABC type extinguishers may be
used on electrical fires.

• Know local procedures for first aid and emergency assistance at the customer facility.

• Use adequate lighting at the equipment location.

• Maintain the recommended temperature and humidity range in the equipment area.

Safe Human Interface
• Use proper lifting techniques when moving or installing the equipment.

• Use standard electrostatic discharge (ESD) precautions when working on or near electrical
circuits.

• Do not defeat or disconnect safety interlocks on covers.

Liability
The WARNING and CAUTION labels have been placed on the equipment for your safety. Please do
not attempt to operate or repair this equipment without adequate training. Any use, operation,
or repair in contravention of this document is at your own risk.

California Prop
Warning: This product contains chemicals, including lead, known to the State of California to
cause cancer, and birth defects or other reproductive harm. Wash hands after handling.

For more information on this warning, refer to:

www.datacard.com/califpropwarning.

Warning: To avoid a possible electric shock, always unplug the system before servicing.

iv

v

Revision Log

Revision Date Description of Changes

A October 2018 First release of this document with part number 527250-
003. This release combines part numbers 527250-001 and
527250-002. The information contained in this document
supports the XPS Card Printer Driver version 7.4.

B October 2020 Updated to support XPS Card Printer Driver version 8.0.

vi

vii

 Contents

Chapter 1: Introduction. 1
Overview . 1
Installation . 3

Chapter 2: SDK Sample Code . 5
Sample Code . 5

Samples Included in the SDK . 5
Print Sample (Not Interactive) . 6
Magnetic Stripe Sample. 7
Bar Code Park Sample . 7
Smart Card Sample. 8
Single-Wire Smart Card Sample . 8
Single-Wire MIFARE Duali Classic Smart Card Sample . 8
Single-Wire Omnikey Smart Card Sample . 9
Lamination Sample . 9
Read and Verify Laminator Serialized Overlay Sample . 10
Emboss and Indent Sample . 10
Laser Sample . 10
Print Locking Sample. 11
Printer Control Sample . 11
Printer State Sample . 11
Status Sample . 11

Sample Code Location . 12
Developer Environments . 12
Printing . 13

Text Printing. 14
Raster Graphics Printing . 14
Vector Graphics Printing. 15
Topcoat and Print Blocking . 16
Controlling Card Printing Preferences. 16
Sample Code that Demonstrates Printing . 17
Get the Status of a Print Job . 17

Embossing . 17
Sample Code that Demonstrates Embossing . 18

Laminating. 18
Laminator Bar Code Read . 18
Sample Code that Demonstrates Laminating . 19

Laser Engraving. 20
Sample Code that Demonstrates Laser Engraving . 20

viii

Chapter 3: Interactive Mode Using the IBidiSpl Interface . 21
Overview . 21
Interactive Operations . 22
Deprecated IBidiSpl Requests . 25
Order and Timing of Interactive Job Operations. 25
Determine the Success of an IBidiSpl Request. 26
Start and End an Interactive Job. 27

Sample Code. 28
Get the Status of an Interactive Job . 29

Sample Code. 30
Interactive Mode Error Recovery . 31

Error-Related Values in the Printer Status Structure . 31
Recovery from Errors . 32

Basic Error Recovery (Recommended) . 32
Advanced Error Recovery . 32
Cancel All Jobs . 33
Errors Cleared at the Printer . 33
Suppress the Driver Message Display . 33

Encode a Magnetic Stripe with Data . 34
Interactive Mode Magnetic Stripe Encoding. 34
Magnetic Stripe Track Data Format . 36
Sample Code—Magnetic Stripe Encode. 36

Read Data From a Magnetic Stripe. 37
Sample Code—Magnetic Stripe Read . 38

Place a Card in the Bar Code Reader . 38
Read Data from a Serialized Laminate Bar Code . 39

Sample Code—Serialized Laminate Bar Code Read . 40
Place a Card in the Smart Card Station . 40

Sample Code—Smart Card Park. 41
Personalize a Smart Card. 41

Printer.SmartCardUnit:SingleWire:Connect . 41
Smart Card Connect Request—Required Information. 42
Smart Card Connect Request—Return Values . 42
Smart Card Connect Request—Status Returned . 43

Printer.SmartCardUnit:SingleWire:Disconnect . 43
Smart Card Disconnect Request—Required Information . 43
Smart Card Disconnect Request—Return Values . 44
Smart Card Disconnect Request—Status Returned . 44

Printer.SmartCardUnit:SingleWire:Transmit . 44
Smart Card Transmit Request—Required Information . 45
Smart Card Transmit Request—Return Values . 45
Smart Card Transmit Request—Status Returned . 45

Printer.SmartCardUnit:SingleWire:Status . 46
Smart Card Status Request—Return Values. 46
Smart Card Status Request—Status Returned . 46

ix

Printer.SmartCardUnit:SingleWire:GetAttrib . 47
Smart Card GetAttrib Request—Required Information . 47
Smart Card GetAttrib Request—Return Values . 47
Smart Card GetAttrib Request—Status Returned . 48

Sample Code—Single-Wire Smart Card Personalization . 48
Return Values from the Sample Code SCard Wrapper . 48

Read and Write Data to MIFARE Classic over Single-Wire . 49
Read and Writer Data to an Omnikey Reader over Single-Wire . 49
Application Responsibilities with Single-Wire Smart Card . 50
Laser Engraving. 51

Retrieve Laser Card Setup Files . 51
Retrieve Laser Elements in a Setup File . 51
Use the Laser Sample . 52
Import or Export Laser Setup Files. 54

Installed Printer Status, Supplies Status, and Counter Status. 55
Printer Status Information . 55

Printer Status. 56
Printer Information. 56
Message Number . 56
Printer Connection Information. 57
Printer Options . 57
Sample Code—Printer Status. 61

Supplies Information . 61
Sample Code—Supplies Status . 65

Card Counts. 65
Get Card Counts. 65
Status XML File for Single Input Hopper Printer . 65
Status XML for Six-Position Input Hopper Printer . 66
Reset Card Counts . 67
Sample Code—Card Counts . 67

Hopper Status. 68
Get Hopper Status . 68
Input Hopper Status XML File for a Retransfer Card Printer . 68
Input Hopper Status XML File for a Non-Retransfer Printer . 69

Locking . 69
Lock or Unlock the Printer . 69
Change the Lock/Unlock Password . 70

Password Rules . 70
Determine the Success of a Lock Request . 71

Sample Code—Locking . 71
Change Color Settings . 72

Change the Color Values. 72
Change One Color Channel . 73
Change Two Color Channels. 73
Set the Color Values to Default Settings . 73

x

Set All Color Channels to Default . 73
Set Two Color Channels to Default . 74

Sample Code—Color Adjust . 74
Change Color Values in Printer Manager or Printer Dashboard . 74

Activate or Deactivate the Printer. 75
Sample Code—Activate or Deactivate Printer . 76

Change the Printer State . 76
Sample Code—Change the Printer State . 76

Restart the Printer . 77
Sample Code—Restart Printer . 77

Shut Down the Printer . 77
Sample Code—Shut Down Printer. 77

Interactive Mode Best Practices . 78

Appendix A: Error Description Strings . A-1

Appendix B: Use Eclipse to Create Java Samples . B-1
Extract the SDK Files . B-1
Create an Eclipse Workspace. B-2
Build the common_java JAR File . B-5
Create Runnable JAR Files for Each Java Sample . B-10
Run the JAR File . B-16
Troubleshooting . B-17
Recommendations . B-17

Appendix C: Use the SDK Java Samples . C-1
Overview . C-1
Use the Java Samples . C-1

Appendix D: Suppress the Driver Message Display . D-1
Enable Driver Silent Mode . D-1
Silent Mode Operation Notes . D-2

Appendix E: SDK CE870 Kiosk System Support . E-1
Overview . E-1
Retrieve the Status of a Kiosk Job . E-2

Appendix F: Print a UV Photo . F-1

Appendix G: References . G-1

1

SDK Programmer’s Reference Guide 1

Chapter 1: Introduction

Overview
The Application Programming Interface (API) built into the XPS Card Printer Windows driver
(referred to as “the driver” in the remainder of this Guide) provides two methods that your
application can use to control card personalization operations through the driver. Both use built-
in Windows operating system interfaces.

 Use the driver Print Ticket. Print Ticket is a required feature of any driver using the XML Paper
Specification (XPS) print driver architecture. A Print Ticket tells the printer how to process a
print job. Through Print Ticket, your application can override the driver’s printing preferences
on a job-by-job basis.

 Use the Windows IBidiSpl interface. The IBidiSpl interface is the Microsoft preferred API for
printer control. Using the IBidiSpl interface, your application places the driver in “interactive
mode,” where the application has fine-grained job control and can access data on the card
during the card personalization process.

The XPS Card Printer Windows Driver SDK (referred to as “the SDK”) includes documentation and
sample code that describe and demonstrate how to use both Print Ticket and the IBidiSpl
interface.

Java does not directly support the IBidiSpl interface. Entrust has created a C++
helper DLL (dxp01sdk_IBidiSpl_interop.dll) that your Java application uses as the
interface for interactive printer control. The helper DLL is included with the
Software Development Kit (SDK).

To learn more about Print Ticket and the IBidiSpl interface, refer to Appendix G:
"References”.

 2 Introduction

The interfaces documented in the SDK provide the following capabilities to your application using
the driver.

 Print while modifying printing characteristics using the Print Ticket:

 Print one- or two-sided

 Disable printing on one or both card sides

 Specify the copy count

 Print in portrait or landscape orientation

 Rotate a card side by 180 degrees

 Select from the predefined topcoat and print blocking

 Specify the input hopper, including the exception hopper, to use when selecting a card

 Use escaped text in the card data to do the following:

 Set topcoat blocking rectangles, and set print blocking rectangles

 Encode standard format magnetic stripe data

 Specify the input hopper used to select the card

 Emboss, indent, and top a card when printing to a CE-series or DS4-ES1 printer

 Disable the application of topping foil on embossed cards

 Read magnetic stripe data

 Encode custom magnetic stripe data

 Place an impression on the front or back of a card with the Tactile Impression Module

 Stage a smart card so it can be personalized

 Stage and personalize a smart card using the single-wire smart card interface

 Read and write data to a MIFARE Classic chip smart card

 Specify the side of the card that should face up when placed in the output hopper

 Laminate, debow, and impress a card

 Process more than one job at a time

 Read the bar code on a serialized overlay

 Place pre-serialized cards in a bar code reader so that the bar code can be read

Not all of the following capabilities of the SDK are available through a Java application.
Refer to Chapter 2: "SDK Sample Code” for more information.

SDK Programmer’s Reference Guide 3

 Send laser engrave data to a laser system

 Check whether the driver or printer is busy and wait before starting a job

 Check the hopper status

 Monitor supplies and printer status

 Get printer and driver error messages

 Recover from printer and driver errors

 Get job status for the current interactive mode job

 Check printer supplies status before printing the card

 Get a count of cards processed by the printer

 Reset the resettable card count values stored in the printer

 Activate or deactivate a printer

 Change the printer state to online, offline, or suspended

 Start the printer cleaning process

 Shut down the printer

 Restart the printer

The SDK supports the same Microsoft Windows operating systems as the driver.

Installation
To use the SDK, extract the XPS Driver SDK zip file to a folder on your computer. For most
situations, there are no SDK additional components to install with your application.

The SDK works with the following:

 XPS Card Printer Driver, version 8.0 or newer

 Datacard® SD Series: SD160™, SD260™, SD260L™, SD360™, SD460™ Card Printers

 Datacard® CD Series: CD800™, CD800 with CLM laminator, CD820™ Card Printers

 Datacard® CE840™ Instant Issuance System

 Datacard® CE870™ Kiosk System

 Entrust Datacard™ CR805™ Retransfer Card Printer

 4 Introduction

 Entrust Datacard™ CL900™ Desktop Laser Personalization System

 Entrust™ Sigma DS2, DS2, and DS3 Direct to Card Printers

 Entrust™ Sigma DS4 Instant Issuance System

 Instant Issuance Systems that are Driver Enabled

A C++ helper DLL (dxp01sdk_IBidiSpl_interop.dll) is included for Java applications because Java
cannot interface directly to the IBidiSpl COM interface.

2

SDK Programmer’s Reference Guide 5

Chapter 2: SDK Sample Code

The SDK includes sample code that demonstrates the details you need to
successfully use the driver API in your application.

Sample Code
The SDK sample code demonstrates specific card personalization tasks using best practices for
Print Ticket usage, job sequencing, and basic error handling. All the samples are console
applications to make it easier to integrate the code into your application. Samples are provided in
C++, C#, VB.NET, and Java. The C++, C#, and VB.NET samples use direct calls to the IBidiSpl
interface. The Java samples use calls to the helper dll (dxp01sdk_IBidiSpl_interop.dll).

Samples Included in the SDK
The SDK includes the following samples:

 If you use the SDK sample code to send a job to a shared printer, you must specify
the fully qualified printer name. Refer to the XPS Card Printer Driver User’s Guide
for complete information about setting up shared printers.

 Several samples include an option to display the Print Ticket data. The default is to
not display the data. Java does not have access to the Print Ticket so Java samples
cannot display Print Ticket data.

Sample Function

Code Sample

cpp csharp vb java

Bar Code BarcodePark barcodePark BarcodePark barcode_park

Emboss and Indent emboss_indent emboss_indent emboss_indent emboss_indent

Lamination lamination lamination lamination Not available

Laminator Serialized
Overlay

lamination_
barcode_read

lamination_
barcode_read

lamination_
barcode_read

Not available

Laser Engraving laser laser laser laser

Print Locking locks locks locks locks

 6 SDK Sample Code

Print Sample (Not Interactive)

Use the Print sample to demonstrate the print functionality of the printer and driver.

The Print sample uses the Print Ticket to override the driver preferences for the following:

 One- or two-sided printing

 Copy count

 Per card-side portrait or landscape orientation (Java is limited to card-level orientation where
both sides of the card have the same orientation)

 Predefined topcoat and print blocking patterns

 Per card-side 180-degree rotation 1

 Per card-side disabling of printing 1

1 Java does not support these features.

Magnetic Stripe magstripe magstripe magstripe magstripe

Print print print print print

Printer Control printer_control printer_control printer_control printer_control

Printer State printer_state printer_state printer_state printer_state

Smart Card smartcard smartcard smartcard smartcard

Single-Wire Smart
Card

smartcard_
singlewire

smartcard_
singlewire

smartcard_
singlewire

smartcard_
singlewire

Single-Wire Mifare
Duali Smart Card

smartcard_
singlewire_duali_
mifare

smartcard_
singlewire_
duali_mifare

smartcard_
singlewire_duali_
mifare

Not available

Single-Wire Omnikey
Smart Card

smartcard_
singlewire_
omnikey

smartcard_
singlewire_
omnikey

smartcard_
singlewire_
omnikey

Not available

Status status status status printer_status

The copy count option is not used whenever the StartJob command is issued.

Sample Function

Code Sample

cpp csharp vb java

SDK Programmer’s Reference Guide 7

The Print sample also demonstrates:

 Color graphics printing

 K (black) text and K graphics printing

 Custom topcoat and print blocking using escapes

 Standard IAT-format magnetic stripe encoding using escapes

 Ability to select the input hopper to use (the default is hopper 1)

 Ability to check the input hopper status before sending the card job

 Ability to poll for job status and error conditions

 Ability to specify the card side (front or back) that faces up when it is placed in the output
hopper

 Ability to impress the front or back of a card if the Tactile Impression Module is installed on
the printer

Magnetic Stripe Sample

The Magnetic Stripe sample demonstrates ISO or JIS magnetic stripe encoding, with options to
read the magnetic stripe data, print text on one or both sides of the card, specify the input
hopper from which to select a card, specify the card side on output, and poll for job completion
status and error conditions. The print and magnetic stripe data is part of the sample and cannot
be changed.

Bar Code Park Sample

The Barcode Park sample demonstrates parking a card with a pre-serialized bar code in the bar
code reader so that the bar code can be read and then moving the card out of the reader. The
sample also includes options to park the card so that a bar code on the back of the card can be
read (the default is to read a bar code on the front of the card), print text on the card, specify the
input hopper from which to select a card, specify the card side on output, and poll for job
completion status and error conditions. The print data is part of the sample and cannot be
changed. You then can specify whether to continue (the bar code read was successful) or reject
(the bar code read failed) the card. The sample prints text if the bar code read is flagged as
successful.

The printer must be equipped with the optional bar code reader for this sample to
function.

 8 SDK Sample Code

Smart Card Sample

The Smart Card sample demonstrates parking a card in the printer smart card reader, moving the
card from the reader, and includes options to specify whether the smart card chip is on the back
of the card, print on the front of the card, specify the input hopper from which to select a card,
specify the card side on output, and poll for job completion status and error conditions. The print
data is part of the sample and cannot be changed.

Single-Wire Smart Card Sample

The Single-Wire Smart Card sample uses the integrated smart card reader that communicates
with the personalization application using the same cable the driver uses to communicate with
the printer. It demonstrates parking a card in the printer smart card reader, moving the card from
the reader, and includes options to specify whether the smart card chip is on the back of the card,
print on the front of the card, specify the input hopper from which to select a card, specify the
card side on output, and to poll for job completion status and error conditions. The print data is
part of the sample and cannot be changed.

Single-Wire MIFARE Duali Classic Smart Card Sample

This sample demonstrates smart card operations including reading and writing to the chip for a
MIFARE Classic smart card. It uses the single-wire smart card tunnel and Duali reader commands
for a MIFARE Classic application. The sample moves the card into and out of the smart card
reader, and includes options to specify whether the smart card chip is on the back of the card,
print on the front of the card, and to poll for job completion status and error conditions. The print
data is part of the sample and cannot be changed.

The printer must be equipped with the single-wire smart card option for this sample
to function correctly.

The printer must be equipped with the single-wire smart card option. You must
use the proper smart cards for this sample to function correctly.

This sample is not available in Java.

SDK Programmer’s Reference Guide 9

Single-Wire Omnikey Smart Card Sample

The Single-Wire Omnikey smart card sample demonstrates parking a card in the printer Omnikey
smart card reader, performing single-wire smart card functions, and moving the card from the
reader. The Omnikey reader supports multiple cards types, allowing you to select the type of card
used from the following: Mifare, iClass, or HIDProx. For each card type, the Omnikey reader
performs the following functions:

 Mifare. Reads the card ID and status, and reads and writes data to block 2.

 iClass. Reads the card ID and status, and reads and writes data to block 18.

 HIDProx. Reads the reads the card ID (UID) and facility code (FAC).

The sample includes options to print and poll for job completion. The print data is part of the
sample and cannot be changed.

Lamination Sample

The Lamination sample demonstrates using Print Ticket to set the lamination options for one or
both lamination stations. It overrides the driver printing preferences settings for those options.
The sample allows you to specify the laminator to use (L1 or L2), and the sides of the card to
laminate. It also includes options to specify the input hopper from which to select a card, specify
the card side on output, and to poll for job completion status and error conditions.

The printer must be equipped with the single-wire smart card option for this sample
to function correctly.

This sample is not available in Java.

The printer must be equipped with a laminator for this sample to function.

This sample is not available in Java.

 10 SDK Sample Code

Read and Verify Laminator Serialized Overlay Sample

This sample demonstrates using the SDK API to retrieve the value of a serialized overlay bar code
from the laminator. It uses the lamination settings specified in the driver, prints a card, and polls
for job completion status and error conditions. It includes a verify option, which allows the
application to control whether the card should continue or be rejected, based on the value
returned. The sample also includes options to specify a wait time to read the bar code data and
to save the bar code read data to a file.

Emboss and Indent Sample

The Emboss and Indent sample demonstrates the use of escapes to emboss, indent, and apply
topping foil to a card using a CE-series or DS4-ES1 instant issuance system. The emboss and
indent data is part of the sample and cannot be changed. The sample also includes options to
specify an input hopper, disable topping foil application, and poll for job completion status and
error conditions.

Laser Sample

The Laser sample demonstrates laser engraving on a card in the laser system. The sample
specifies the laser setup file to use, and engraves the data on the card. Additional options allow
you to transfer laser setup .zip files between the laser system and the computer, and query laser
card setups and their elements. The sample also includes options to encode ISO magnetic stripe
data, print text on the card (depending on the printer capabilities), specify the input hopper from
which to select a card, and poll for job completion status and error conditions. The laser
engraving, print, and magnetic stripe data are part of the sample and cannot be changed.

The printer must be equipped with a laminator, a bar code scanner, and serialized
overlay loaded in the L1 laminator cartridge for this sample to function.

This sample is not available in Java.

The Java sample program does not include the following options:
 Disable topping foil application. If you want to disable topping foil, select Printing

preferences in the Card Printer Driver and set Layout > Advanced > Embosser
topping to Off.

 Display the print ticket data.

This sample works only with a CL900 desktop laser system.

SDK Programmer’s Reference Guide 11

Print Locking Sample

The Print Locking sample demonstrates locking and unlocking the printer using a password (for
printers that are equipped with a lock). The sample also allows you to activate or deactivate a
printer using the password, to change the password, or set it to a blank password. The sample
locks the printer when the password is changed.

Printer Control Sample

The Printer Control sample demonstrates a way to cancel all jobs in the printer, reset cards counts
that are resettable, shut down and restart the printer, and start the printer cleaning process.
Using this sample to cancel jobs allows you to return the printer to a known good state. In
addition to canceling jobs active, or queued, in the printer, any job in an error state in the driver
also is canceled.

The Printer Control sample also demonstrates changing the red color settings and setting the
default red and green color settings for SD-, CD-, and CE-series direct-to-card printers running
D3.17.4 or newer firmware, and Sigma direct-to-card printers running D4 firmware.

Printer State Sample

The Printer State sample demonstrates changing the printer state to offline, online, or
suspended.

Status Sample

The Status sample demonstrates using interactive mode to retrieve printer options, printer status
messages, card counts, supply information, job completion status, and error conditions. The
sample also allows you to start a job and includes options to specify the input hopper from which
to select a card and specify the card side on output.

When you use the printer control sample to start the printer cleaning process, the
process completes properly and message, 172: Insert cleaning card is removed from
the computer. However, the job is not removed from the print queue. If there is more
than one cleaning card job in the print queue, the insert cleaning card message
continues to display on the computer monitor.

 12 SDK Sample Code

Sample Code Location
The sample source code is located in the samples folder. Select the folder that matches the
programming language you are interested in, and then select the folder for the sample containing
the features you want to learn about.

Compiled versions of the samples for Visual C++, Visual C#, and VB.NET are included in the exes
folder. These allow you to demonstrate the sample code without having to build the code
yourself. Each sample includes help text that describes the parameters you can enter. To view the
help from a command line, open the appropriate language folder, and select the operating
system folder for your computer. Open a command prompt window and enter the full path name
of the sample with no parameters to display help information and command line options.

The compiled samples have the following runtime dependencies.

 C++: Requires Microsoft Visual C++ 2015 Redistributable Package (x86 and x64), or newer.
Use the following link to download the appropriate software package:

https://www.microsoft.com/en-us/download/details.aspx?id=48145

 C# and VB.NET: Require Microsoft .NET v4 Client Framework.

The Java sample programs included in the samples folder require that you first create a
common_java.jar file and then create a runnable JAR file for each sample that you want to use.
Refer to Appendix B: "Use Eclipse to Create Java Samples” for complete information.

In addition, runnable Java JAR files for the sample programs are included in the jars folder. You
can run these JAR files without having to build them. Refer to Appendix C: "Use the SDK Java
Samples” for complete information.

Developer Environments
The sample code was developed using the following tools. You are not required to use these, but
their use guarantees that the sample code builds without issue.

 C++, C#, and VB.NET: Microsoft Visual Studio 2015, or newer. (You can use any edition,
including the free Express Edition, for C# and VB.NET. Visual C++ requires the Professional
edition at a minimum.)

You can update the Visual Studio project to use Visual Studio 2017 or Visual
Studio 2019. You need to disable Spectre mitigation if your PC does not have
runtime libraries with mitigation enabled. The /Qspectre option is available in
Visual Studio 2017 version 15.5. 5 and later, and in Visual Studio 2015 Update 3
through KB 4338871.
More information is available at:
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre?view=vs-2019

SDK Programmer’s Reference Guide 13

 Java: Eclipse Oxygen release. Appendix B: "Use Eclipse to Create Java Samples” contains step-
by-step instructions for building the SDK Java sample code with Eclipse. In addition the Java
helper DLL requires that the Microsoft Visual C++ 2013, or newer, Redistributable Package be
installed. The download link is shown in “Sample Code Location”.

The runnable JAR files included with the SDK in the jars folder were built and tested using
Java 8 update 181. We recommend you use this Java version with the samples. Refer to
Appendix C: "Use the SDK Java Samples” for more information.

Printing
Your application can either print or block areas on the card from printing using conventional
printing APIs along with escapes. This method is always used, even when a job includes
interactive mode operations for other card personalization tasks or monitoring job status.

Using Print Ticket, a Microsoft Visual C++, C#, or VB.NET application can override any of the
printing preferences set in the driver's Printing Preferences window.

Java printing does not have access to the Print Ticket, so Java applications do not support the
following options:

 Rotate the front side or back side image

 Disable printing

In addition, Java applications limit the card orientation (portrait or landscape) to the entire card,
not per side.

The driver separates the print items into separate images expected by the printer (color,
monochrome, UV, luster). The images that are created are based on both of the following:

 The type of print items in the card design

 The type of ribbon installed in the printer

The Card Printer Driver always uses the ribbon panels designated for the current card side and
adjusts the print items on the card to create the best possible image using those panels.

The following sections describe rules for rendering card design elements.

 14 SDK Sample Code

Text Printing
The driver uses the following rules to determine which panels are used to print text:

 If the printer has a color ribbon, any text that is 100% opaque and pure black is rendered by
the monochrome black (K) ribbon panel if one is available for the current card side.
Otherwise, black text is rendered using the color panels. Text that is 100% opaque and pure
white is “punched out” of both the color and monochrome panels. In other words, the white
text is created by not printing any color so the white card background shows through. All
other text is rendered using the color ribbon panels.

 If the printer has a monochrome ribbon, all non-white text is converted to pure black and
prints the same as pure black text would. Pure white text is punched out of any color
surrounding it.

 If the printer has a ribbon that includes an ultraviolet (F) or luster (L) panel, text that is 100%
opaque and is set at RGB(217,217,217) is rendered by the appropriate panel.

Raster Graphics Printing
Raster graphics are images with formats such as bmp, jpeg, png, and tiff.

The driver uses the following rules to determine which panels to use when printing a raster
graphic:

 If the printer has a color ribbon with a K panel on the current card side, a raster graphic is
rendered by the monochrome (K) ribbon panel when any of the following are true:

 It is a 2-color (1 bpp) image with black being one of the colors

OR

 It is a 100% opaque image with only pure black and pure white pixels

OR

 An image contains any black pixels and the printing preference “Print black image pixels
using monochrome” is enabled. In this case, only the near-black pixels are printed with
the K panel.

All other images are rendered to the color panels.

Due to the way JPEG compresses images, it is unlikely that a JPEG image will ever
have only black and white pixels.

SDK Programmer’s Reference Guide 15

 If the printer has a monochrome ribbon, all raster graphics are rendered by the monochrome
(K) ribbon panel. Images that normally would be rendered to the color panels (for example,
photos) are half-toned to preserve the image details.

 If the printer has a ribbon with a UV (F) or luster (L) panel, a raster graphic is rendered by the
F or L panel when it is a 100% opaque image where one color is RGB(217,217,217) and the
other color is pure white.

Vector Graphics Printing
Vector graphics are images with formats, such as WMF. These images are represented by a series
of commands that draw graphic objects to create the complete image. Most vector graphics
elements have an outside border (the stroke) and an inside color (the fill).

The driver uses the following rules to determine which panels are used to print a vector graphic
element.

 If the printer has a color ribbon with a K panel on the current card side, a vector graphic is
rendered by the monochrome (K) ribbon panel when:

 There is no fill and the stroke is 100% opaque and pure black

OR

 There is no stroke and the fill is 100% opaque and pure black

OR

 Both the fill and stroke are 100% opaque and pure black

All other elements are rendered to the color panels.

 If the printer has a monochrome ribbon, all vector graphic elements are rendered by the
monochrome (K) ribbon panel. Elements that would normally be rendered to the color panels
are half-toned to make them appear as a shade of gray.

 If the printer ribbon includes a UV (F) or luster (L) panel, a vector graphic element is rendered
by the F or L panel when it is 100% opaque and is set to RGB(217,217,217).

 16 SDK Sample Code

Topcoat and Print Blocking
A card design may have features that must not be printed on or have topcoat applied over them.
Examples include a smart card chip, a magnetic stripe, and a signature panel. Using escapes, you
can specify rectangles to block printing, block topcoat, or apply topcoat. Details about using
escapes for blocking printing and topcoat can be found in the “Print Blocking Escapes” section of
the XPS Card Printer Driver User’s Guide.

A retransfer card printer blocks printing on the back side of the card only if the ink ribbon
includes an inhibitor panel on the back side panel set. When you use escapes to specify a non-
printing area over a smart card chip on the front of the card, the primer panel is not applied,
preventing the retransfer film (and any printing) from adhering to the card. Refer to the “Print
Blocking in a Retransfer Printer” section of the XPS Card Printer Driver User’s Guide for complete
information.

For more information on non-printing areas, refer to the “Non-Printing Areas” section of your
printer’s Installation and Administrator’s Guide.

Controlling Card Printing Preferences
The Windows printing interface allows job-level application control of the following:

 Card orientation (portrait or landscape)

 Two-sided printing

 Copy count

Applications written in Microsoft Visual C++, C#, and VB.NET can use the Print Ticket to access
custom preferences created just for the XPS Card Printer Driver. The custom preferences are:

 Per side card orientation

 Per side 180-degree card image rotation

 Per side disable printing flag that ignores the print data in the job

 Selection of one of the print and topcoat blocking preset masks

 Input hopper used to select the card

 Split-ribbon color printing (non-retransfer printers only)

 Lamination, debow, and impress actions

 A second layer of retransfer material applied to the card (retransfer card printers only)

SDK Programmer’s Reference Guide 17

Sample Code that Demonstrates Printing
The SDK includes sample code with language-specific implementation details for printing. The
samples are:

Get the Status of a Print Job
Your application can retrieve the status for the current print job to determine whether the printer
is still actively processing the card.

PrinterJobID is used to identify the job. The printer job ID is retrieved by calling
Printer.PrintMessages:Read after the print job has been submitted to the printer. Once the
printer job ID is known, the job status can be retrieved using Printer.JobStatus:Read with the
PrinterJobID of the current job. Refer to “Get the Status of an Interactive Job” on page 29.

Embossing
Your application can use escapes to emboss, indent, and apply topping foil to a card sent to a
CE-series or DS4-ES1 instant issuance system. The Visual C++, C#, and VB.NET emboss_indent
samples also allow you to disable the application of topping foil.

Escapes that control embossing and indenting are designed to work across a wide range of
applications. The escapes rely on special text character sequences to alert the driver that the text
that follows is meant as a command and is not to be printed.

For more information about embosser escapes, including examples and limitations, refer to the
XPS Card Printer Driver User’s Guide.

Language Sample Code Compiled Samples

Visual C++, Visual C#,
and VB.NET

print exes

Java print Refer to Appendix B: "Use Eclipse to
Create Java Samples” for information
about how to create a runnable JAR file.
Refer to Appendix C: "Use the SDK Java
Samples” for information about how to
use the runnable JAR files shipped with
the SDK.

The Java sample does not support disabling the topping foil (refer to “Emboss and
Indent Sample” on page 10).

 18 SDK Sample Code

Sample Code that Demonstrates Embossing
For working code that demonstrates embossing, indenting, and topping, refer to the following
samples:

Laminating
Your application can laminate and impress a card when using a printer with a laminator. If you
plan to use the same lamination settings for all cards, you simply can set the driver’s printing
preferences. However, your application can override the driver preferences for laminating, either
by modifying the job’s Print Ticket or by including escapes in the text data for the job.

The SDK sample code demonstrates how to control these operations using the Print Ticket.

Escapes that control lamination and impressing are designed to work across the widest range of
applications. The escapes rely on special text character sequences to alert the driver that the text
that follows is meant as a command and is not to be printed. For more information about
lamination escapes, including examples and limitations, refer to the XPS Card Printer Driver User’s
Guide.

Laminator Bar Code Read
If your system includes a CLM laminator that is equipped with a bar code scanner and you have
the proper supplies installed, you can retrieve the unique value printed on each serialized overlay
patch by reading the matching bar code printed on the lamination material next to the patch.
This value provides your application with a traceable identifier that links the patch applied to the
card to the other data used to personalize the card. Reading the bar code is an interactive mode
operation. Refer to “Read Data from a Serialized Laminate Bar Code” on page 39.

Language Sample Code Compiled Samples

Visual C++, Visual C#,
and VB.NET

emboss_indent exes

Java emboss_indent Refer to Appendix B: "Use Eclipse to
Create Java Samples” for information
about how to create a runnable JAR file.
Refer to Appendix C: "Use the SDK Java
Samples” for information about how to
use the runnable JAR files shipped with
the SDK.

SDK Programmer’s Reference Guide 19

Sample Code that Demonstrates Laminating
For working code that demonstrates Print Ticket control of laminating, printing, and polling for
job status and error conditions, and bar code read, refer to the following samples:

Language Sample Code Compiled Samples

Visual C++, Visual C#, and
VB.NET

lamination
lamination_barcode_read

exes

Java Java does not include a lamination sample.

 20 SDK Sample Code

Laser Engraving
Your application can send data to the CL900 laser system that can be laser engraved on a card,
query laser elements from a setup file, and import or export card setup files to the laser system.
The laser system requires additional laser setup files and card design information that is present
on the laser system.

The laser sample uses a byte interface to communicate with the printer driver. Laser engraved
images must be base64 binary-encoded. The driver expects the laser data to be in bytes so that it
is consistent with the laser interface.

In addition to laser engraving, the laser sample also allows you to:

 Transfer laser setup files between the PC and the laser system. You can specify to import
(transfer files from the PC to the laser system) or export (transfer files from the laser system
to the PC) the files.

 Retrieve the names of all laser card setup files present in the laser system.

 Retrieve variable laser elements in each laser card setup file.

Refer to the documentation for the laser system for complete information about defining laser
setup and card design files.

Sample Code that Demonstrates Laser Engraving
For working code that demonstrates control of laser engraving, magnetic stripe encoding,
printing, and polling for job status and error conditions, refer to the following sample:

Language Sample Code Compiled Samples

Visual C++, Visual C#,
and VB.NET

laser exes

Java laser Refer to Appendix B: "Use Eclipse to
Create Java Samples” for information
about how to create a runnable JAR file.
Refer to Appendix C: "Use the SDK Java
Samples” for information about how to
use the runnable JAR files shipped with
the SDK.

3

SDK Programmer’s Reference Guide 21

Chapter 3: Interactive Mode
Using the IBidiSpl Interface

Interactive mode is used when your application needs to control the
movement of the card in the printer, retrieve data from the card, or
retrieve error and job status information.

Overview
The XPS Card Printer Windows driver uses the Microsoft IBidiSpl interface for bidirectional
communication between your application and the printer in interactive mode. The following
interactive mode functions are supported by this release of the driver SDK:

 Job control of interactive card personalization functions

 Job control for error detection and recovery

 Encode magnetic stripe

 Read magnetic stripe

 Smart card park (front or back of card)

 Get supplies and printer status

 Single-wire smart card park and personalization

 Read serialized patch overlay bar code

 Place pre-serialized cards in a bar code reader so that the bar code can be read

 Send laser engrave data to a laser system

 Monitor and reset card counts

 Get installed printer options

 Get the input hopper status (retransfer card printers only)

 Specify the input hopper (1–6) to use when selecting a card

 Specify the side of the card (front or back) that faces up when it is placed in the output
hopper

 Lock and unlock a printer with locks, and change a password

 Activate or deactivate the printer

 22 Interactive Mode Using the IBidiSpl Interface

 Change the printer state

 Change color settings (SD-, CD-, CE-series direct-to-card printers running D3.17.4 or newer
firmware, and Sigma direct-to-card printers running D4 firmware)

 Shut down and restart the printer

 Start the printer cleaning cycle

 Impress the front or back of the card if the Tactile Impression Module is installed

Printing, magnetic stripe encoding using escapes or fonts, topcoating, embossing and indenting,
laminating, and impressing are done outside interactive mode, but can be mixed with interactive
functions within the same job.

Interactive Operations
The following IBidiSpl requests and Java helper DLL functions are used to implement the
functions described in the “Overview” on page 21:

Java does not have direct access to the IBidiSpl interface. A C++ helper DLL
(dxp01sdk_IBidiSpl_interop.dll) is provided with the SDK that Java applications
use for interactive mode.

IBidiSpl Requests Java Helper DLL Interface Functions

Job Control (normal)

 Printer.Print:StartJob:Set
 Printer.Print.EndJob:Set
 Printer.Action:Set
 Printer.JobStatus:Read

 StartJob2
 EndJob
 ResumeJob
 GetJobStatusXML

Job control (error state)

 Printer.PrintMessages:Read
 Printer.Action:Set

 PrinterStatusXML.GetPrinterMessages
 CancelJob

SDK Programmer’s Reference Guide 23

Card personalization

 Printer.MagstripeUnit:Back:Encode
 Printer.MagstripeUnit:Back:Read
 Printer.MagstripeUnit:Front:Encode
 Printer.MagstripeUnit:Front:Read
 Printer.BarcodeUnit:Front:Park
 Printer.BarcodeUnit:Back:Park
 Printer.SmartCardUnit:Front:Park
 Printer.SmartCardUnit:Back:Park
 Printer.SmartCardUnit:SingleWire:Connect
 Printer.SmartCardUnit:SingleWire:Disconnect
 Printer.SmartCardUnit:SingleWire:Transmit
 Printer.SmartCardUnit:SingleWire:Status
 Printer.SmartCardUnit:SingleWire:Control
 Printer.SmartCardUnit:SingleWire:GetAttrib

MagstripeEncode2
MagstripeRead2
 DoBarcodePark
 SmartCardPark
 SCardConnect
 SCardDisconnect
 SCardGetAttrib
 SCardStatus
 SCardTransmit

Laser engraving

 Printer.Laser:Engrave:SetupFileName:Set
 Printer.Laser:Engrave:Text:Set
 Printer.Laser:Engrave:Binary:Set
 Printer.Laser:SetupFileName:Get
 Printer.Laser:ElementList:Get
 Printer.Laser:Upload:File:Get
 Printer.Laser:Download:File:Set

Java uses multiple instances of the
BidiXPSDriverInterface(x) function, where x
can be the following:
 LASER_QUERY_SETUP_FILESLIST
 LASER_QUERY_ELEMENT_LIST
 LASER_UPLOAD_ZIP_FILE_FROM_PRINTER
 LASER_DOWNLOAD_ZIP_FILE_TO_

PRINTER
 LASER_ENGRAVE_SETUP_FILE_NAME
 LASER_ENGRAVE_TEXT
 LASER_ENGRAVE_BINARY

Printer and supplies capabilities and status

 Printer.PrinterOptions2:Read
 Printer.CounterStatus2:Read
 Printer.SuppliesStatus3:Read
 Printer.ResetCardCount:Set
 Printer.Hopper:Status:Get

 GetPrinterOptions2
 GetPrinterCounterStatus2
 GetPrinterSuppliesStatus
 ResetCardCounts
 GetHopperStatus

IBidiSpl Requests Java Helper DLL Interface Functions

 24 Interactive Mode Using the IBidiSpl Interface

Laminator

 Printer.Laminator:BarcodeRead:Set
 Printer.Laminator:BarcodeRead:Get
 Printer.Laminator:BarcodeReadAndVerify:Set

Not available in Java

Activation

 Printer.ActivatePrinter:Set  ActivateOrDisablePrinter

Printer control

 Printer.ChangePrinterState:Set
 Printer.Restart:Set
 Printer.PowerDown:Set

 ChangePrinterState
 RestartPrinter

Color adjust

 Printer.AdjustColor:Set
 Printer.SetDefaultColor:Set

 SetColorAdjust
 DefaultColorAdjust

Lock control

 Printer.Locks:ChangeLockState:Set
 Printer.Locks:ChangePassword:Set

 SetPrinterLockState
 ChangeLockPassword

IBidiSpl Requests Java Helper DLL Interface Functions

SDK Programmer’s Reference Guide 25

Deprecated IBidiSpl Requests
The following IBidiSpl requests have been deprecated:

 Printer.PrinterOptions:Read was replaced by the following in an earlier version of the driver:

 Printer.PrinterOptions2:Read

 Printer.CounterStatus2:Read

 Printer.SuppliesStatus:Read

 Printer.SuppliesStatus:Read and Printer.SuppliesStatus2:Read were replaced by the following
in an earlier version of the driver:

 Printer.SuppliesStatus3:Read

 The CheckPrintRibbonSupplies and CheckEmbossSupplies options in StartJob. Use the
following IBidiSpl request to check the status of remaining supplies using the SDK:

 Printer.SuppliesStatus3:Read

Order and Timing of Interactive Job Operations
The application must implement the following interactive operations in a specific order or at a
specific time:

 A Start Job request is always the first operation

 An End Job or Cancel Job request is always the last operation

 An End Job request must not be issued until printing operations for the job have entered the
driver spooler.

You should perform smart card and interactive magnetic stripe encode and read
operations before print operations. Refer to the sample code for examples of best
practices regarding the sequence of card operations.

 26 Interactive Mode Using the IBidiSpl Interface

Determine the Success of an IBidiSpl Request
Because all IBidiSpl requests return success, the return value cannot be used to determine the
outcome of the request. IBidiSpl requests also return a printer status XML structure. This
structure contains information about whether the request succeeded or failed and, if it failed,
information about the error that was detected.

The following example shows the printer status XML structure returned from a failed StartJob
command. The command failed because the printer failed to pick a card.

<?xml version="1.0" ?>
<!-- Printer status xml file.-->
<PrinterStatus>

<ClientID>STATUSTEST</ClientID>
<WindowsJobID>0</WindowsJobID>
<PrinterJobID>780</PrinterJobID>
<ErrorCode>111</ErrorCode>
<ErrorSeverity>4</ErrorSeverity>
<ErrorString>Message 111: Card not picked.</ErrorString>
<DataFromPrinter><![CDATA[]]></DataFromPrinter>

</PrinterStatus>

The printer status structure contains the following elements:

For operations that return data from the printer, this structure also contains the data
if the operation succeeded.

Element Description of the element value

ClientID A unique identifier of the client that created the job. This
element is not used at this time.

WindowsJobID The Windows Job ID assigned by the operating system.

PrinterJobID The Print job ID assigned by the driver.

ErrorCode If the command succeeded, the ErrorCode is 0 (zero). A non-
zero value means an error was detected. For non-zero
ErrorCode values, the ErrorSeverity and ErrorString elements
also contain values.

ErrorSeverity Errors are classified into severity levels (1, 2, 3, 4, or 5). The
severity level determines which recovery actions are possible.

SDK Programmer’s Reference Guide 27

Start and End an Interactive Job
To start a job that contains one or more interactive operations, your Visual C++, Visual C#,
or VB.NET application must call the IBidiSpl interface with the schema set to
Printer.Print:StartJob:Set. You can specify input hopper 1 through 6 from which to pick the
card. If no hopper is specified, the driver picks a card from hopper 1. You also can specify the side
of the card (front or back) that faces up when it is placed in the output hopper

The StartJob request might fail and return error 506. This indicates that the driver or printer is
busy and cannot accept another job at this time. A laminating system can have multiple active
jobs, and your application might need to wait and retry the StartJob request when the printer is
ready to accept it. Refer to the source code samples to see how the StartJob request handles
error 506.

For Java, call the StartJob2 method of the dxp01sdk_IBidiSpl_interop.dll.

The start job request always must be the first IBidiSpl request.

To end a job, the Visual C++, Visual C#, or VB.NET application calls the IBidiSpl interface
with the schema set to Printer.Print:EndJob:Set. For Java, call the EndJob method of the
dxp01sdk_IBidiSpl_interop.dll. The end job command is issued after the last interactive operation
is successful.

ErrorString A short human-readable description of the error, including
the error number. This matches the message that displays on
the printer LCD panel.

DataFromPrinter If the command was intended to read data from the card in
the printer and the read operation was a success, this
element contains the data in the CDATA section.

If printing follows the interactive operations, the end job request cannot be sent until
the print data appears in the spooler. Submitting an end job immediately results in
the job ending before the print data is detected. This results in a second card that
contains only the print data. The SDK sample code demonstrates a reliable method
for detecting that the print data is in the spooler.

Element Description of the element value

 28 Interactive Mode Using the IBidiSpl Interface

Sample Code
For working code that demonstrates interactive mode Start Job, End Job, and basic error
recovery, refer to the following samples:

Visual C++, Visual C#,
and VB.NET

magstripe
smartcard

Java magstripe
smartcard

SDK Programmer’s Reference Guide 29

Get the Status of an Interactive Job
Your application can retrieve the status for the current interactive job to determine if the printer
is still actively processing the card or if the card is complete. The PrinterJobID is used to identify
the job. This ID is part of the Printer Status structure returned from the Start Job request.

To retrieve job status, your application uses the IBidiSpl interface with the schema set to
Printer.JobStatus:Read to send an XML structure with the Printer Job ID of the current
interactive job. For Java, call the GetJobStatusXML method of the Java helper DLL
(dxp01sdk_IBidiSpl_interop.dll).

<?xml version=\"1.0\"?>
<!--job status xml-->
<JobStatus>

<PrinterJobID>5860</PrinterJobID>
</JobStatus>

The Job Status request returns the job status in another XML structure.

<?xml version="1.0" ?>
<!-- Job status xml file. -->
<JobStatus>

<ClientID>STATUSTEST</ClientID>
<WindowsJobID>5</WindowsJobID>
<PrinterJobID>5680</PrinterJobID>
<JobState>JobActive</JobState>
<JobRestartCount>0</JobRestartCount>

</JobStatus>

The ClientID, WindowsJobID, and PrinterJobID have the same meaning as the Printer Status
elements returned from other IBidiSpl requests. The JobState and JobRestartCount are unique to
this request.

Element Description of the element value

JobState The state of the job. The value is one of the following:
JobActive, JobSucceeded, JobFailed, JobCancelled, or
NotAvailable. Kiosk printers have two additional states:
CardReadyToRetrieve and CardNotRetrieved.

JobRestartCount The number of times the job was retried. This is always
zero for interactive jobs.

 30 Interactive Mode Using the IBidiSpl Interface

Using the JobState value, your application can determine if the card is still being processed by the
printer or, if it has completed, whether it was personalized successfully.

If your application sends jobs to a kiosk printer, the JobState value indicates if the card is ready to
be retrieved, or was not retrieved and moved to the reject tray. Your application needs to poll for
job completion after submitting the job until the JobState value is returned. (Refer to Appendix E:
"SDK CE870 Kiosk System Support” for information about how the SDK works with a kiosk
system.)

Sample Code
For working code that demonstrates interactive mode Job Status use, refer to the following
samples:

JobState value Description

JobActive A card is still being personalized by the printer.

JobSucceeded The card is complete. The job completed without a detected
error.

JobFailed The card is complete. An error forced the job to terminate
before the card personalization process completed.

JobCancelled The card is complete. The job was canceled before the card
personalization process completed.

NotAvailable There is no information for the PrinterJobID provided. Either
the value provided is wrong or this is no longer the current
job.

CardReadyToRetrieve The card is complete. The user can retrieve the card from the
printer. This support is available for kiosk printers only.

CardNotRetrieved The card is complete. The printer moved the card to the reject
tray because it was not retrieved in time by the user. This
support is available for kiosk printers only.

Visual C++, Visual C#,
and VB.NET

magstripe
smartcard
status

Java magstripe
smartcard
printer_status

SDK Programmer’s Reference Guide 31

Interactive Mode Error Recovery
When the driver is in interactive mode, errors are reported back to your application through
the printer status structure returned by every IBidiSpl request. Your application also can get
this information by calling the IBidiSpl interface with the schema set to
Printer.PrintMessages:Read. For Java, call the PrinterStatusXML.GetPrinterMessages()
method of the Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

Error-Related Values in the Printer Status Structure
Three values in the Printer Status structure are used to communicate error information to your
application.

Element Description of the element value

ErrorCode If the command succeeded, the ErrorCode is 0 (zero). A non-zero value
means an error was detected. The value of the ErrorCode element will be
one of the message numbers listed in Appendix A: "Error Description
Strings”. For non-zero ErrorCode values, the ErrorSeverity and ErrorString
elements also contain values.

ErrorSeverity Errors are classified into severity levels (1, 2, 3, 4, or 5). The severity level
determines which error recovery actions are possible.

ErrorString Contains a short description of the error, including the error number.
Appendix A: "Error Description Strings” lists the ErrorString values your
application can receive from the driver while in interactive mode. The
ErrorString value is in the language of the operating system if the
language is one of the translations released with the driver.

ErrorSeverity Severity description Action

1 Alert—Unrecoverable issue for job Cancel job

2 Critical—Unrecoverable issue for job Cancel job

3 Error—Unrecoverable issue for card;
recoverable issue for job

Restart or cancel job

4 Warning—Recoverable issue for card Resume or cancel job

5 Notice—Information only None required

 32 Interactive Mode Using the IBidiSpl Interface

Recovery from Errors
To clear an error while in interactive mode, your application uses the IBidiSpl interface with the
schema set to Printer.Action:Set to send an XML structure with the Printer Job ID of the
current interactive job, the ErrorCode you are responding to, and the action you want to take.
Java can call the CancelJob or ResumeJob method of the Java helper DLL (dxp01sdk_IBidiSpl_
interop.dll).

The following example shows the structure sent to cancel a job when the input hopper is empty.

<?xml version="1.0"?>
<!--printer command xml-->
<PrinterAction>

<Action>100</Action>
<PrinterJobID>5860</PrinterJobID>
<ErrorCode>112</ErrorCode>

</PrinterAction>

Basic Error Recovery (Recommended)

The most robust form of error recovery from an interactive mode error is to cancel the job. Using
this error recovery strategy, your application reports the job as failed and, if a card has been
picked, it is ejected from the printer. After you correct the cause of the error, you can attempt the
card personalization job again.

Advanced Error Recovery

By evaluating the ErrorSeverity value, your application sometimes can offer to resume the job
after the cause of the error is corrected. In practice, this complicates error recovery because the
application must poll the driver for printer status in the event that the error is corrected and
cleared using the printer LCD display. If the ErrorCode is 0, the application can assume that the
error was cleared using the printer LCD.

You must set the ErrorCode to match the error you are responding to for successful
error recovery.

Action
value Action description

Allowed for
ErrorSeverity level

100 Cancel—Reject the current card. End the current job. All

101 Resume—Attempt to continue with the current card. 4

SDK Programmer’s Reference Guide 33

Cancel All Jobs

If you know that your application is the only one sending jobs to the printer, you can cancel all the
jobs in the printer to return it to a known good state. This is not recommended for production
use, but can be helpful during development.

Sample Code

For working code that demonstrates how to cancel all jobs, refer to the following samples:

Errors Cleared at the Printer

After an error condition is corrected at the printer, the operator sometimes can use either the
application or the printer’s front panel to report that the error is corrected. We recommend that
operators be instructed to use the application to acknowledge that error conditions are
corrected. Otherwise, the application may get out of sync with the state of the printer.

Suppress the Driver Message Display

If you prefer to have your application manage error reporting and resolution, you can configure
the driver to suppress the display of messages. Refer to Appendix D: "Suppress the Driver
Message Display” for details.

A laminating system can have multiple active jobs. Using Cancel All Jobs also cancels
jobs that are not in an error state.

Visual C++, Visual C#,
and VB.NET

printer_control

Java printer_control

 34 Interactive Mode Using the IBidiSpl Interface

Encode a Magnetic Stripe with Data
There are three ways to encode data onto a magnetic stripe on the a card.

 Use magnetic stripe escapes in the card data to instruct the driver to encode an IAT track; the
data is included between the escape characters. This is processed by the driver along with
the print data and does not require interactive mode. Refer to the “Magnetic Stripe Escapes”
section of the XPS Card Printer Driver User’s Guide for details about how to use escapes for
magnetic stripe encoding.

 Use the magnetic stripe fonts installed with the Card Printer Driver to encode IAT or JIS
formatted data by placing the data on the card design and specifying the magnetic stripe font
for the format and track desired. This is processed by the driver along with the print data and
does not require interactive mode. Refer to the “Magnetic Stripe Fonts” section of the XPS
Card Printer Driver User’s Guide for details about how to use magnetic stripe fonts for
magnetic stripe encoding.

 Use the IBidiSpl interface to pass magnetic stripe data through the driver in the format
expected by the printer. This method is described in the following sections.

Interactive Mode Magnetic Stripe Encoding
Using the IBidiSpl interface, a card’s magnetic stripe can be encoded on the front side or back side
of the card. The following assumes you are encoding to the back side of the card.

To encode a magnetic stripe with data, your application calls the IBidiSpl interface with the
schema set to Printer.MagstripeUnit:Back:Encode. For Java, call the MagstripeEncode2
method of the Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

The IBidiSpl commands used to encode only the magnetic stripe on a card are:

1. StartJob—The printer starts the job and picks the card.

2. MagstripeEncode—The application sends the magnetic stripe track data.

3. EndJob—The printer ejects the card into the output hopper.

The printer must be configured to match the format of the magnetic stripe data
being sent.

SDK Programmer’s Reference Guide 35

The following flowchart illustrates magnetic stripe encoding:

 36 Interactive Mode Using the IBidiSpl Interface

Magnetic Stripe Track Data Format
When using interactive mode magnetic stripe encoding, the magnetic stripe track data must be
provided in the XML format the printer expects. The track data itself must be encoded as UTF-8
and then converted to base64 ASCII. Your application also is responsible for sending track data
that is valid for the magnetic stripe format configured at the printer.

The following example shows an XML structure with three tracks of IAT data: track 1 = TRACK1,
track 2 = 1122, track 3 = 321.

<?xml version="1.0" encoding="UTF-8"?>
<magstripe >

<track number="1">
<base64Data>VFJBQ0sx</base64Data>

</track>
<track number="2">

<base64Data>MTEyMg==</base64Data>
</track>
<track number="3">

<base64Data>MzIx</base64Data>
</track>

</magstripe >

Sample Code—Magnetic Stripe Encode
For working code that demonstrates interactive mode magnetic stripe encoding, refer to the
following samples:

Visual C++, Visual C#,
and VB.NET

magstripe

Java magstripe

SDK Programmer’s Reference Guide 37

Read Data From a Magnetic Stripe
Using the IBidiSpl interface, data can be read from the tracks of a card’s magnetic stripe on the
back side of the card. To read data from the magnetic stripe, your application calls the IBidiSpl
interface with the schema set to Printer.MagstripeUnit:Back:Read. For Java, call the
MagstripeRead2 method of the Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

Like all IBidiSpl requests, the printer status XML structure is returned to your application. The
magnetic stripe track data is returned inside the CDATA element of the printer status structure.
This data comes directly from the printer without any modification from the driver.

<?xml version="1.0"?>
<!--Printer status xml file.-->
<PrinterStatus>

<ClientID>STATUSTEST_{200AEAAC-CA0A-4AF6-BD77-083A5836AE1A}</ClientID>
<WindowsJobID>0</WindowsJobID>
<PrinterJobID>5837</PrinterJobID>
<ErrorCode>0</ErrorCode>
<ErrorSeverity>0</ErrorSeverity>
<ErrorString></ErrorString>
<DataFromPrinter><![CDATA[<?xml version="1.0" encoding="UTF-8"?>

<magstripe xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope" xmlns:SOAP-
ENC="http://www.w3.org/2003/05/soap-encoding" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:DPCLMagStripe="urn:dpcl:magstripe:2010-01-19" xsi:type="DPCLMagStripe:MagStripe"
SOAP-ENV:encodingStyle="http://www.w3.org/2003/05/soap-encoding">

<track number="1">
<base64Data>zw9PkBBQQzw9PkBBQUVJTVFVWV1hZWltcXV5fICEiIyQlJicoKSorLA==</
base64Data>

</track>
<track number="2">

<base64Data>MDEyMzQ1Njc4OTo7PD0+jc4OTo7PD0+MDEyMzQ1Ng==</base64Data>
</track>
<track number="3">

<base64Data>MDEyMzQ1Njc4OTo7PDDEyMzQ1Njc4OTo7PD0+MDEyMzQ1Njc4OTo7PD0=</
base64Data>

</track>
</magstripe>]]></DataFromPrinter>
</PrinterStatus>

The track data must be converted from base64 ASCII to the format required by your application.

For example, a job consisting of magnetic stripe read, magnetic stripe encode, and printing would
use the following operations in the order specified:

1. Start Job—The printer starts the job and picks the card.

2. Magnetic Stripe Read—The application reads the magnetic stripe track data.

3. Magnetic Stripe Encode—The application sends the magnetic stripe track data.

4. Print card side(s)—Use the Windows printing interface (for example, GDI, WinForms), not
IBidiSpl.

 38 Interactive Mode Using the IBidiSpl Interface

5. Wait for the print data to enter the spooler.

6. End Job—The printer completes printing and then ejects the card into the output tray.

Sample Code—Magnetic Stripe Read
For working code that demonstrates interactive mode magnetic stripe read, refer to the following
samples:

Place a Card in the Bar Code Reader
If the printer is equipped with the optional bar code reader, the IBidiSpl interface allows you to
park a pre-serialized card in the reader, wait for the bar code on the card to be read, and then
move the card out of the reader. To park the card in the bar code reader, your application calls the
IBidiSpl interface with the schema set to either Printer.BarcodeUnit:Front:Park or
Printer.BarcodeUnit:Back.Park. For Java, call the DoBarcodePark method of the Java helper
DLL (dxp01sdk_IBidiSpl_interop.dll).

After the bar code read completes, your application controls if the card is placed in the reject tray,
or if it continues on to other personalization operations. To resume or cancel the job, use the
IBidiSpl interface with the schema set to Printer.Action:Set to send an XML structure with
the Printer Job ID of the current interactive job and the action you want to take. Java can call the
CancelJob or ResumeJob method of the Java helper DLL.

<?xml version="1.0"?>
<!--printer command xml-->
<PrinterAction>

<Action>101</Action>
<PrinterJobID>6524</PrinterJobID>
<ErrorCode>0</ErrorCode>

</PrinterAction>

A Resume action (Action value = 101) indicates that the bar code read completed successfully,
and the card is ready for further processing.

A Cancel action (Action value = 100) indicates that the bar code read failed, and the card should
be rejected without any further personalization.

For example, a job consisting of bar code read and printing would use the following operations in
the order specified:

1. StartJob—The printer starts the job and picks the card.

2. ParkCard—The printer parks the card at the bar code station.

Visual C++, Visual C#,
and VB.NET

magstripe

Java magstripe

SDK Programmer’s Reference Guide 39

3. ResumeJob—The printer moves the card from the bar code station so that the card can be
processed further.

4. Print Card Side(s)—Use the Windows printing interface (for example, GDI, WinForms), not
IBidiSpl.

5. Wait for the print data to enter the spooler.

6. EndJob—The printer completes printing and then ejects the card into the output tray.

Use the SDK command BARCODE_PARK when the bar code is on the front side of the card or
BARCODE_PARK_BACK when a bar code is on the back side of the card.

For printers running D3 firmware, set the Printer Manager BarcodeLocation setting to CardFront
and use the SDK BARCODE_PARK and BARCODE_PARK_BACK commands to specify the card side
to read.

Read Data from a Serialized Laminate Bar Code
If your system includes a CLM laminator that is equipped with the optional bar code scanner, the
IBidiSpl interface allows you to read data from the bar code printed on the serialized overlay
material. To read the bar code data, your application calls the IBidiSpl interface with the schema
set to Printer.Laminator:BarcodeRead:Get.

The application also can let the printer know whether or not the bar code data will be verified by
calling the IBidiSpl interface with the schema set to one of the following:
Printer.Laminator:BarcodeRead:Set or Printer.Laminator:BarcodeReadAndVerify:Set.

The Printer.Laminator:BarcodeRead:Set command simply retrieves the bar code data and
the card continues automatically. When you use the Printer.Laminator:BarcodeRead
AndVerify:Set command, the printer stops after the bar code data is returned and waits for the
application to instruct it to continue or to reject the card.

The bar code read commands differ somewhat from other commands in that the act of reading
the bar code in the laminator occurs after the card is printed. Thus, your application makes the
request to read the bar code and then must wait and check for the data to be returned. The driver
SDK interface allows you to specify a value for the wait time, or to allow an infinite wait time (this
is the default). We recommend that your application does not specify a timeout value. This gives
the laminator time to warm up, which can take up to several minutes if it is just starting, before it
accepts the card for processing.

You also have the option to save the bar code read results to a file.

 40 Interactive Mode Using the IBidiSpl Interface

Sample Code—Serialized Laminate Bar Code Read
For working code illustrating best practices for the serialized laminate bar code read, refer to the
following samples:

Place a Card in the Smart Card Station
Using the IBidiSpl interface, a card can be placed (parked) in the printer’s smart card
station where it can be read, personalized, or both. To park a card in the printer’s smart
card station, your application calls the IBidiSpl interface with the schema set to
Printer.SmartCardUnit:Front:Park or Printer.SmartCardUnit:Back:Park. For Java,
call the SmartCardPark method of the Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

After smart card personalization completes, your application controls if the card is placed in the
reject tray, or if it continues on to other personalization operations. To resume or cancel the job,
use the IBidiSpl interface with the schema set to Printer.Action:Set to send an XML structure
with the Printer Job ID of the current interactive job and the action you want to take.

<?xml version="1.0"?>
<!--printer command xml-->
<PrinterAction>

<Action>101</Action>
<PrinterJobID>5860</PrinterJobID>
<ErrorCode>0</ErrorCode>

</PrinterAction>

A Resume action (Action value = 101) indicates that smart card personalization completed
successfully, and the card is ready for further processing.

A Cancel action (Action value = 100) indicates that smart card personalization failed, and the card
should be rejected without any further personalization.

For Java, call either the ResumeJob, CancelJob, or EndJob method of the Java helper DLL
(dxp01sdk_IBidiSpl_interop.dll).

For example, a job consisting of smart card encoding and printing would use the following
operations in the order specified:

1. StartJob—The printer starts the job and picks the card.

2. ParkCard—The printer parks the card at the smart card station.

3. ResumeJob—The printer moves the card from the smart card station so that the card can be
processed further.

Visual C++, Visual C#,
and VB.NET

lamination_barcode_read

Java Java does not support this feature.

SDK Programmer’s Reference Guide 41

4. Print Card Side(s)—Use the Windows printing interface (GDI, WinForms, etc.), not IBidiSpl.

5. Wait for the print data to enter the spooler.

6. EndJob—The printer completes printing and then ejects the card into the output tray.

Sample Code—Smart Card Park
For working code that demonstrates interactive mode smart card station park, refer to the
following samples:

Personalize a Smart Card
If your printer is equipped with a single-wire smart card reader, you can personalize the card
using the driver SDK after the smart card is parked. The IBidiSpl requests used to do this are:

 Printer.SmartCardUnit:SingleWire:Connect

 Printer.SmartCardUnit:SingleWire:Disconnect

 Printer.SmartCardUnit:SingleWire:Transmit

 Printer.SmartCardUnit:SingleWire:Status

 Printer.SmartCardUnit:SingleWire:GetAttrib

Printer.SmartCardUnit:SingleWire:Connect
A Connect request establishes a connection between the calling application and a smart card
parked in the reader. If no card exists in the reader, an error is returned.

To connect to the smart card in the reader, use the IBidiSpl interface with the schema set to
Printer.SmartCardUnit:SingleWire:Connect. For Java, call the SCardConnect method of the
Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

Visual C++, Visual C#,
and VB.NET

smartcard

Java smartcard

 42 Interactive Mode Using the IBidiSpl Interface

Smart Card Connect Request—Required Information

Your application must create an XML structure indicating the protocol to use (contact or
contactless). The driver receives this XML formatted data as a BIDI_BLOB.

<?xml version=\"1.0\"?>
<SmartcardConnect>

<PreferredProtocol>SCARD_PROTOCOL_CL</PreferredProtocol>
</SmartcardConnect>

Smart Card Connect Request—Return Values

 The IBidiSpl interface returns a printer status XML structure. The printer status includes a
valid ClientID, WindowsJobID (if applicable, 0 for interactive mode jobs), PrinterJobID, and
ErrorCode.

 If the ErrorCode is zero, the connection request was successful.

 If the ErrorCode is non-zero, the connection request failed. In this case, the printer status
XML file also contains values for ErrorSeverity and ErrorString.

 The CDATA section in the printer status XML structure returns any response from the smart
card reader.

Protocol Name Value Connection Type

SCARD_PROTOCOL_CL Contactless

SCARD_PROTOCOL_T0_OR_T1 Contacted

SDK Programmer’s Reference Guide 43

Smart Card Connect Request—Status Returned

The following example shows a printer status XML structure returned by a single-wire smart card
Connect IBidiSpl request. The smart card reader response is included in the CDATA section.

<?xml version="1.0"?>
<!--Printer status xml file.-->
<PrinterStatus>
<ClientID>Test-Win7_{716DD9A0-CF52-4176-B1C0-A10FA8DB055A}</ClientID>
<WindowsJobID>0</WindowsJobID>
<PrinterJobID>6049</PrinterJobID>
<ErrorCode>0</ErrorCode>
<ErrorSeverity>0</ErrorSeverity>
<ErrorString></ErrorString>
<DataFromPrinter><![CDATA[
<?xml version="1.0"?><!--smartcard response xml-->
<SmartcardResponse>
<Protocol>SCARD_PROTOCOL_RAW</Protocol>
<State> </State>
<Status>SCARD_S_SUCCESS</Status>
<Base64Data> </Base64Data>
</SmartcardResponse>
]]></DataFromPrinter></PrinterStatus>

Printer.SmartCardUnit:SingleWire:Disconnect
A Disconnect request terminates a connection previously opened between the calling application
and a smart card in the reader.

To terminate a connection, use the IBidiSpl interface with the schema set to
Printer.SmartCardUnit:SingleWire:Disconnect. For Java, call the SCard Disconnect method
of the Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

Smart Card Disconnect Request—Required Information

Your application must create an XML structure indicating the disconnect method to use. The
driver receives this XML formatted data as a BIDI_BLOB.

<?xml version=\"1.0\"?>
<SmartcardDisconnect>

<Disposition>SCARD_LEAVE_CARD</Disposition>
</SmartcardDisconnect

Disconnect Method Value Action

SCARD_LEAVE_CARD Leave as is

SCARD_RESET_CARD Reset the card

SCARD_UNPOWER_CARD Power down the card

 44 Interactive Mode Using the IBidiSpl Interface

Smart Card Disconnect Request—Return Values

 The IBidiSpl interface returns a printer status XML structure. The printer status includes a
valid ClientID, WindowsJobID (if applicable, 0 for interactive mode jobs), PrinterJobID and
ErrorCode.

 If the ErrorCode is zero the request was successful.

 If the ErrorCode is non-zero the request failed. In this case, the printer status XML file
also contains values for ErrorSeverity and ErrorString.

 The CDATA section in the printer status XML structure returns any response from the smart
card reader.

Smart Card Disconnect Request—Status Returned

The following example shows a printer status XML structure returned by a single-wire smart card
Disconnect IBidiSpl request. The single-wire smart card reader response is included in the CDATA
section.

Sample XML file returned for disconnect
<?xml version="1.0"?>
<!--Printer status xml file.-->
<PrinterStatus>
<ClientID>Test-Win7_{716DD9A0-CF52-4176-B1C0-A10FA8DB055A}</ClientID>
<WindowsJobID>0</WindowsJobID>
<PrinterJobID>6049</PrinterJobID>
<ErrorCode>0</ErrorCode>
<ErrorSeverity>0</ErrorSeverity>
<ErrorString></ErrorString>
<DataFromPrinter><![CDATA[
<?xml version="1.0"?><!--smartcard response xml-->
<SmartcardResponse>
<Protocol> </Protocol>
<State> </State>
<Status>SCARD_S_SUCCESS</Status>
<Base64Data> </Base64Data>
</SmartcardResponse>
]]></DataFromPrinter></PrinterStatus>

Printer.SmartCardUnit:SingleWire:Transmit
A Transmit request sends a service request to the smart card and expects to receive data back
from the card.

To send a request, use the IBidiSpl interface with the schema set to
Printer.SmartCardUnit:SingleWire:Transmit. For Java, call the SCardTransmit
method of the Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

SDK Programmer’s Reference Guide 45

Smart Card Transmit Request—Required Information

Your application must create a smart card transmit XML structure with the chip data encoded as
Base64 ASCII. The driver receives this XML formatted data as a BIDI_BLOB.

<?xml version=\"1.0\"?>
<SmartcardTransmit>

<SendBuffer>AKQAAA==</SendBuffer>
</SmartcardTransmit>

Smart Card Transmit Request—Return Values

 The IBidiSpl interface returns a printer status XML structure. The printer status includes a
valid ClientID, WindowsJobID (if applicable, 0 for interactive mode jobs), PrinterJobID, and
ErrorCode.

 If the ErrorCode is zero, the transmit request was successful.

 If the ErrorCode is non-zero, the transmit request failed. In this case, the printer status
XML file also contains values for ErrorSeverity and ErrorString.

 The CDATA section in the printer status XML structure returns any response from the smart
card reader.

Smart Card Transmit Request—Status Returned

The following example shows a printer status XML structure returned by a single-wire smart card
Transmit IBidiSpl request. The single-wire smart card reader response is included in the CDATA
section.

<?xml version="1.0"?>
<!--Printer status xml file.-->
<PrinterStatus>
<ClientID>agarwas-Win7_{716DD9A0-CF52-4176-B1C0-A10FA8DB055A}</ClientID>
<WindowsJobID>0</WindowsJobID>
<PrinterJobID>6049</PrinterJobID>
<ErrorCode>0</ErrorCode>
<ErrorSeverity>0</ErrorSeverity>
<ErrorString></ErrorString>
<DataFromPrinter><![CDATA[
<?xml version="1.0"?><!--smartcard response xml-->
<SmartcardResponse>
<Protocol> </Protocol>
<State> </State>
<Status>SCARD_S_SUCCESS</Status>
<Base64Data>ZwA=</Base64Data>
</SmartcardResponse>
]]></DataFromPrinter></PrinterStatus>

 46 Interactive Mode Using the IBidiSpl Interface

Printer.SmartCardUnit:SingleWire:Status
A Status request provides the current status of the smart card in the reader. You can call it any
time after a successful call to SCardConnect and before a successful call to SCardDisconnect. It
does not affect the state of the reader or reader driver.

To retrieve the smart card status, use the IBidiSpl interface with the schema set to
Printer.SmartCardUnit:SingleWire:Status. For Java, call the SCardStatus method of the
Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

Smart Card Status Request—Return Values

 The IBidiSpl interface returns a printer status XML structure. The printer status includes a
valid ClientID, WindowsJobID (if applicable, 0 for interactive mode jobs), PrinterJobID, and
ErrorCode.

 If the ErrorCode is zero, the status request was successful.

 If the ErrorCode is non-zero, the status request failed. In this case, the printer status XML
file also contains values for ErrorSeverity and ErrorString.

 The CDATA section in the printer status XML structure returns any response from the smart
card reader.

Smart Card Status Request—Status Returned

The following example shows a sample printer status XML structure returned by a single-wire
smart card Status IBidiSpl request. The single-wire smart card response is included in the CDATA
section.

<?xml version="1.0"?>
<!--Printer status xml file.-->
<PrinterStatus>

<ClientID>agarwas-Win7_{716DD9A0-CF52-4176-B1C0-A10FA8DB055A}</ClientID>
<WindowsJobID>0</WindowsJobID>
<PrinterJobID>6049</PrinterJobID>
<ErrorCode>0</ErrorCode>
<ErrorSeverity>0</ErrorSeverity>
<ErrorString></ErrorString>
<DataFromPrinter><![CDATA[

<?xml version="1.0"?><!--smartcard response xml-->
<SmartcardResponse>
<Protocol>SCARD_PROTOCOL_RAW</Protocol>
<State>SCARD_PRESENT|SCARD_POWERED|SCARD_NEGOTIABLE</State>
<Status>SCARD_S_SUCCESS</Status>
<Base64Data>O/2RAP+RgXH+QABCAAAAAACBgYAXCACIGQ==</Base64Data>
</SmartcardResponse>
]]></DataFromPrinter></PrinterStatus>

SDK Programmer’s Reference Guide 47

Printer.SmartCardUnit:SingleWire:GetAttrib
A GetAttrib request retrieves the current reader attributes. It does not affect the state of the
reader, driver, or card.

To retrieve the smart card reader attributes, use the IBidiSpl interface with the schema set to
Printer.SmartCardUnit:SingleWire:GetAttrib.

Smart Card GetAttrib Request—Required Information

Your application must create a smart card status XML structure with the name of the reader
attribute you want information for. The driver receives this XML formatted data as a BIDI_BLOB.

<?xml version=\"1.0\"?>
<!--smartcard get attrib xml-->
<SmartcardGetAttrib>

<Attr>SCARD_ATTR_VENDOR_IFD_VERSION</Attr>
</SmartcardGetAttrib>

Smart Card GetAttrib Request—Return Values

 The IBidiSpl interface returns a printer status XML structure. The printer status includes a
valid ClientID, WindowsJobID (if applicable, 0 for interactive mode jobs), PrinterJobID, and
ErrorCode.

 If the ErrorCode is zero, the GetAttrib request was successful.

 If the ErrorCode is non-zero, the GetAttrib request failed. In this case, the printer status
XML file also contains values for ErrorSeverity and ErrorString.

 The CDATA section in the printer status XML structure returns any response from the smart
card reader.

AttribName Action

SCARD_ATTR_VENDOR_NAME Reader Vendor

SCARD_ATTR_VENDOR_IFD_
VERSION

Vendor-supplied interface device version.
DWORD is in the form 0xMMmmbbbb, where:
MM = major version
mm = minor version
 bbbb = build number

SCARD_ATTR_VENDOR_IFD_TYPE Vendor-supplied interface device type (model
designation of reader)

SCARD_ATTR_VENDOR_IFD_SERIAL_
NO

Vendor-supplied interface device serial number

 48 Interactive Mode Using the IBidiSpl Interface

Smart Card GetAttrib Request—Status Returned

The following is an example of a printer status XML structure returned by a single-wire smart card
GetAttrib IBidiSpl request. The single-wire smart card response is included in the CDATA section.
In this case, it is a request for the vendor name. The name is returned in the Base64Data element
as Base64 encoded ASCII and must be decoded by your application.

<?xml version="1.0"?>
<!--Printer status xml file.-->
<PrinterStatus>
<ClientID>agarwas-Win7_{716DD9A0-CF52-4176-B1C0-A10FA8DB055A}</ClientID>
<WindowsJobID>0</WindowsJobID>
<PrinterJobID>6049</PrinterJobID>
<ErrorCode>0</ErrorCode>
<ErrorSeverity>0</ErrorSeverity>
<ErrorString></ErrorString>
<DataFromPrinter><![CDATA[
<?xml version="1.0"?><!--smartcard response xml-->
<SmartcardResponse>
<Protocol> </Protocol>
<State></State>
<Status>SCARD_S_SUCCESS</Status>
<Base64Data> O/2RAP+RgXH+QABCAAAAAACBgYAXCACIGQ==</Base64Data>
</SmartcardResponse>
]]></DataFromPrinter></PrinterStatus>

Sample Code—Single-Wire Smart Card Personalization
For working code that demonstrates personalization of a smart card, refer to the following
samples:

The SDK sample code wraps the IBidiSpl interface providing an interface that is similar to the
Microsoft Windows SCard API. You can include this code in your application or communicate
directly to the IBidiSpl interface, as you prefer.

Return Values from the Sample Code SCard Wrapper
Return values are provided by the printer as strings, but PC/SC applications expect a numeric
HRESULT value. The SDK wrapper code converts the return string to the HRESULT value expected
by the application. Possible return values are either SCARD_S_SUCCESS or an error. You can find
PC/SC error code information at: http://msdn.microsoft.com/en-us/library/ms936965.aspx

Visual C++, Visual C#,
and VB.NET

smartcard_singlewire

Java smartcard_singlewire

SDK Programmer’s Reference Guide 49

Read and Write Data to MIFARE Classic over
Single-Wire

The SDK smartcard_singlewire_duali_mifare sample demonstrates how to read and write data to
a MIFARE Classic chip using Duali smart card reader commands over a single-wire smart card
connection.

For working code that demonstrates personalization of a MIFARE Classic smart card, refer to the
following samples:

Read and Writer Data to an Omnikey Reader
over Single-Wire

The SDK smartcard_singlewire_omnikey sample demonstrates how to read and write data to a
smart card chip using the Omnikey smart card reader. The Omnikey reader supports multiple
cards types, allowing you to select the type of card to use from the following: Mifare, iClass, or
HIDProx.

For working code that demonstrates personalization using an Omnikey reader, refer to the
following samples:

Visual C++, Visual C#,
and VB.NET

smartcard_singlewire_duali_mifare

Java Java does not support this feature.

Visual C++, Visual C#,
and VB.NET

smartcard_singlewire_omnikey

Java Java does not support this feature .

 50 Interactive Mode Using the IBidiSpl Interface

Application Responsibilities with Single-Wire
Smart Card

Your application must be able to do the following:

 Verify that the single-wire smart card reader is available in the printer. You can use the
IBidiSpl interface to get the printer options to do this.

 Park the smart card before using the single-wire smart card reader, and move the card out of
the reader when the personalization is complete.

 Send data the chip can accept. The driver does not check or alter the data.

 Format the data so it can be understood by the printer and reader.

Applications written for PC/SC readers require modification to use the single-wire smart
card feature. The PC/SC interface commonly used to interact with USB-connected smart
card readers is not directly supported by the driver API.

SDK Programmer’s Reference Guide 51

Laser Engraving
Your application can send data to the CL900 desktop laser system that can be laser engraved on a
card. The laser system requires additional setup and card design information to be present on the
laser system itself. Refer to the documentation for your laser system for complete information
about setting up the required files.

Retrieve Laser Card Setup Files
Using the IBidiSpl interface, your application can retrieve the laser card setup information in the
printer. The information is required to process the laser data.

To retrieve the names of all of the laser card setup files present in printer, your application calls
the IBidiSpl interface with the schema set to Printer.Laser:SetupFileName:Get.

The following example shows the XML structure that is returned with three laser card setup
names.

<?xml version="1.0" encoding="UTF-8"?>
<QuerySetupsResult>

<LaserCardSetups>
<LaserCardSetup name="TestCardSetup"/>
<LaserCardSetup name="TestCardSetup1"/>
<LaserCardSetup name="TestCardSetup2"/>

</LaserCardSetups>
</QuerySetupsResult>

Retrieve Laser Elements in a Setup File
The application also can retrieve the variable laser elements in a laser card setup file.

To retrieve element names of a laser card setup file present in the laser system, your application
calls the IBidiSpl interface with the schema set to Printer.Laser:ElementList:Get with the
laser setup file name as data.

The following example shows the XML structure of the TestCardSetup1 laser card setup file. The
setup file contains seven variable element names. The information returned for each element
includes the element name, the type of element, and the card side.

<?xml version="1.0" encoding="UTF-8"?>
<QueryElementsResult>

<ElementInformationList>
<ElementInformation name="PHOTO" type="BINARY" side="FRONT" />
<ElementInformation name="GIVEN_NAME" type="TEXT" side="FRONT" />
<ElementInformation name="FAMILY_NAME" type="TEXT" side="FRONT" />
<ElementInformation name="DOB" type="TEXT" side="FRONT" />
<ElementInformation name="SIGNATURE" type="BINARY" side="FRONT" />
<ElementInformation name="BARCODE_1D" type="TEXT" side="BACK" />
<ElementInformation name="BARCODE_2D" type="BINARY" side="BACK" />

</ElementInformationList>
</QueryElementsResult>

 52 Interactive Mode Using the IBidiSpl Interface

Use the Laser Sample
The flowchart illustrates the laser engraving process without
magnetic stripe encoding or printing.

The Laser sample program shows how to laser engrave three
types of laser layouts:

 Duplex card. The card is engraved on both sides with
variable data elements.

 Simplex card. The card is engraved on one side with variable
data elements.

 Static card. The card is engraved with predefined data that
does not need variable elements. The static card can be
either single-sided or double-sided.

The laser engrave data can be one of the following types:

 TEXT. A UTF-8 text string. This includes text strings and some
bar code formats.

 BINARY. Base64-encoded binary data. This includes images
and bar codes.

The application must send the name of the laser card setup file
(LASER_ENGRAVE_SETUP_FILE_NAME).

If the setup file contains variable elements, the application also
must send the variable data for each element to be engraved.
(LASER_ENGRAVE_TEXT and LASER_ENGRAVE_BINARY).

The following examples illustrate the operations to laser engrave
a card. Refer to the sample program for examples that show how
to specify the laser operations.

 A job that laser engraves a static layout would use the following IBidiSpl operations in the
order specified:

a. Start Job—The printer starts the job and picks the card.

b. Specify the laser setup file—Specify the static laser setup file name.

c. End Job—The printer ejects the card into the output hopper.

Sent all
laser engrave

elements?

StartJob

Send laser card
setup file name

Send laser
engrave bitmap
or text strings

No

Yes

EndJob

SDK Programmer’s Reference Guide 53

 A job that engraves a duplex card layout with variable data elements would use the following
IBidiSpl operations in the order specified:

a. Start Job—The printer starts the job and picks the card.

b. Specify the laser setup file—Specify the duplex laser setup file name, and the variable
elements count.

c. Specify laser engrave data—Send text or binary information for all the variable elements
in the laser setup file.

d. End Job—The printer ejects the card into the output hopper.

 A job that encodes a magnetic strip, prints text (depending on the printer capabilities), and
laser engraves data would use the following IBidiSpl operations in the order specified:

a. Start Job—The printer starts the job and picks the card.

b. Magnetic Stripe Encode—The application sends the magnetic stripe track data.

c. Print card side(s)—Use the Windows printing interface (for example, GDI, WinForms),
not IBidiSpl.

d. Wait for the print data to enter the spooler.

e. Specify the laser setup file—Specify the laser setup file name, and the variable elements
count.

f. Specify laser engrave data—Send text or binary information for all the variable elements
in the laser setup file.

g. End Job—The printer completes printing and then ejects the card into the output tray.

The laser card layout file specifies the element name location and the card side.
The application does not have to specify where the element will be engraved.

 54 Interactive Mode Using the IBidiSpl Interface

Import or Export Laser Setup Files
Using the IBidiSpl interface, your application can transfer laser card setup files from one laser
system to another. To export the laser card setup files from the laser system, the driver returns a
zip file containing the setup files to the PC. The application then can import the zip file from the
PC to another laser system.

To export all the files related to a laser card setup from a system, your application calls the
IBidiSpl interface with the schema set to Printer.Laser:Upload:File:Get.

The driver returns the base64-encoded zip file from the laser system. The zip file contains all the
items that are linked to the specified laser setup file name, such as the ConCAD file, laser profiles,
pattern match setup, and so on.

To import the zip file containing the laser setup to a different laser system, your application calls
the IBidiSpl interface with the schema set to Printer.Laser:Download:File:Set.

The following XML is returned to your application when exporting or importing zip files from, or
to, a system:

<?xml version="1.0"?>
<!--laser response xml-->
-<LaserResponse>

<Status>1</Status>
<Base64Data> </Base64Data>

</LaserResponse>

The zip file should not be modified by the application before importing it to another
laser system.

Status Value Description

1 Action succeeded

0 Action failed

SDK Programmer’s Reference Guide 55

Installed Printer Status, Supplies Status, and
Counter Status

Your application can determine the status of the printer and which options are available in the
printer, information about the supplies loaded in the printer, and card counts.

Printer Status Information
To retrieve printer status, your application uses the IBidiSpl interface with the schema set to
Printer.PrinterOptions2:Read. For Java, call the GetPrinterOptions2 method of the
Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

The following shows a sample printer status XML file returned by this request. The information
that is returned depends on the values provided by the printer.

<?xml version="1.0"?>
<!--Printer options2 xml file.-->
<PrinterInfo2>

<PrinterStatus>Ready</PrinterStatus>
<PrinterAddress>172.16.5.79</PrinterAddress>
<PrinterModel>CXXXX</PrinterModel>
<PrinterSerialNumber>C15133</PrinterSerialNumber>
<PrinterVersion>XX.XX.X-X</PrinterVersion>
<PrinterMessageNumber>0</PrinterMessageNumber>
<ConnectionPortType>Network</ConnectionPortType>
<ConnectionProtocol>Version2Secure</ConnectionProtocol>
<OptionInputhopper>SingleHopper</OptionInputhopper>
<OptionMagstripe>ISO</OptionMagstripe>
<OptionSecondaryMagstripeJIS>None</OptionSecondaryMagstripeJIS>
<OptionRewritable>None</OptionRewritable>
<OptionSmartcard>Single wire</OptionSmartcard>
<OptionDuplex>Auto</OptionDuplex>
<OptionPrinterBarcodeReader>None</OptionPrinterBarcodeReader>
<OptionLocks>Installed</OptionLocks>
<LockState>Locked</LockState>
<PrintEngineType>DirectToCard_DyeSub</PrintEngineType>
<PrintHead>Installed</PrintHead>
<ColorPrintResolution>300x300 | 300x600</ColorPrintResolution>
<MonochromePrintResolution>300x300 |300x600 |300x1200</MonochromePrintResolution>
<TopcoatPrintResolution>300x300</TopcoatPrintResolution>
<ModuleEmbosser>Installed</ModuleEmbosser>
<EmbosserVersion>E1.1.24-0</EmbosserVersion>
<Laminator>None</Laminator>
<TactileImpresser>None</TactileImpresser>
<Kiosk>None</Kiosk>
<LaserModule>Installed</LaserModule>
<LaserVisionRegistration>Installed</LaserVisionRegistration>
<ObscureBlackPanel>None</ObscureBlackPanel>

</PrinterInfo2>

The expanded list of printer information described in the following section requires
Printer.PrinterOptions2:Read.

 56 Interactive Mode Using the IBidiSpl Interface

Printer Status

The PrinterStatus element contains the state of the printer at the time of the request. Your
application can use this to determine if the printer is online and ready to accept a job.

Printer Information

Message Number

The MessageNumber element contains the error number if the printer is in an error state. A
value of zero means there is no error. (Refer to Appendix A: "Error Description Strings” for a list of
messages.)

PrinterStatus Value Description

Unavailable The printer is not connected or is powered off.

Ready The printer is available to accept a job.

Busy The printer is processing a job.

Paused The printer has errors or has been paused.

Suspended The printer's front panel or Print Manager application is being
used.

Initialize The printer is powering up and not ready to accept a job.

Shutdown The printer is powering down and cannot accept a job.

Element Value Description

PrinterAddress The IP address of the printer.

PrinterModel The model of the printer.

PrinterSerialNumber The serial number of the printer.

PrinterVersion The firmware version installed on the printer.

SDK Programmer’s Reference Guide 57

Printer Connection Information

Printer Options

Element Value Description

ConnectionPortType Identifies the physical connection being used to communicate
to the printer. The possible values are:
 Network
 USB

ConnectionProtocol Identifies the protocol used to communicate with the printer.
The possible values are:
 Version1
 Version2
 Version2Secure
Version2Secure is required if you want all the data exchanged
between the driver and printer to be encrypted.

Element Value Description

OptionInputhopper The input hopper configuration for this printer. The values
are:
 SingleFeed
 SingleHopper
 SingleHopperWithExceptionSlot
MultiHopper6WithExceptionSlot
 HopperAutoDetect
Note: Printers that support hopper detection return the
value HopperAutoDetect for OptionInputHopper. Your
application then can use the IBidiSpl operation
Printer.Hopper:Status:Get, or the Java function
GetHopperStatus to get the input hopper status.

OptionMagstripe The magnetic stripe configuration for this printer. The values
are:
 None
 ISO
 JIS

 58 Interactive Mode Using the IBidiSpl Interface

OptionRewritable Identifies if this printer supports rewritable cards. The values
are:
 None
 Installed
Note: For printers that support rewritable cards, the
rewritable feature must be enabled and the printer
configured correctly.

OptionSecondaryMagstripeJIS The secondary magnetic stripe configuration for the printer.
The values are:
 None
 Installed

OptionSmartcard The smart card configuration for this printer. The values are:
 None
 Installed
 Single wire

OptionDuplex The duplex configuration for this printer. The values are:
Manual
 Auto

OptionPrinterBarcodeReader Indicates if a bar code reader is installed. The values are:
 None
 Installed
Note: The CR805 retransfer printer cannot detect if a bar
code reader is installed in the printer. The value None is
returned even if the bar code reader is installed.

OptionLocks The lock configuration for this printer. The values are:
 None
 Installed

LockState The lock state if the printer has the lock option installed. The
values are:
 Locked
 Unlocked
This element is missing if the OptionLock value is None.

PrintEngineType The type of printer reporting the information. The values are:
 DirectToCard_DyeSub
 Retransfer_Pigment

Element Value Description

SDK Programmer’s Reference Guide 59

PrintHead Indicates if this printer includes a printhead. (The printer
might not have a printhead if you are connected to an
emboss-only CE840 system.) The values are:
 None
 Installed

ColorPrintResolution The color printing resolutions supported by this printer. This
is a list of values separated by a “|” character. The value list
may include:
 300x300
 300x600
 600x600 (CR805 retransfer card printer only)
This element is missing if the PrintHead value is None.

MonochromePrintResolution The monochrome printing resolutions supported by this
printer. This is a list of values separated by a "|" character.
The value list may include:
 300x300
 300x600
 300x1200
 600x600 (CR805 retransfer card printer only)
This element is missing if the PrintHead value is None.

TopcoatPrintResolution The topcoat resolution supported by this printer. The values
are:
 300x300
 Unknown

ModuleEmbosser Indicates if this printer includes a CEM embosser. The values
are:
 None
 Installed

EmbosserVersion The embosser firmware version if the system includes an
embosser. The element is missing if the EmbossModule
value is None.

Laminator Indicates if the printer includes a laminator and, if so,
whether it has one or two lamination stations. The values
are:
 None
 L1
 L1, L2

Element Value Description

 60 Interactive Mode Using the IBidiSpl Interface

LaminatorFirmwareVersion The laminator firmware version if the system includes a
laminator. This element is missing if the Laminator value is
None.

LaminatorImpresser Indicates if the laminator includes the card impresser option.
The values are:
 None
 Installed

LaminatorScanner Indicates if the laminator includes the bar code scanner
option. The values are:
 None
 Installed

TactileImpresser Indicates if the Tactile Impression Module is installed on the
printer. The values are:
 None
 Installed

Kiosk Indicates if the system is a kiosk system. The values are:
 None
 Installed

LaserModule Indicates if the laser module is installed. The values are:
 None
 Installed

LaserFirmwareVersion The laser firmware version if the system is a laser system.
This element is missing if the LaserModule value is None.

LaserVisionRegistration Indicates if the Laser Vision module is installed. The values
are:
 None
 Installed
This element is missing if the LaserModule value is None.

ObscureBlackPanel Indicates if the printer has the ability to obscure the
information printed with the K panel. The values are:
 None
 Installed

Element Value Description

SDK Programmer’s Reference Guide 61

Sample Code—Printer Status

For working code that demonstrates printer status, refer to the following samples:

Supplies Information
Your application can determine the status of supplies using the IBidiSpl interface with the schema
set to Printer.SuppliesStatus3:Read. For Java, call the GetPrinterSuppliesStatus method of
the Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

The request returns the supplies status XML file.

<?xml version="1.0"?>
<!--Printer Supplies3 xml file.-->
<PrinterSupplies3>

<PrinterStatus>Ready</PrinterStatus>
<Printer>

<PrintRibbon>Installed</PrintRibbon>
<PrintRibbonType>YMCKT</PrintRibbonType>
<RibbonRemaining>76</RibbonRemaining>
<RibbonSerialNumber>E0055000008D355F</RibbonSerialNumber>
<RibbonLotCode>10-23-16 </RibbonLotCode>
<RibbonPartNumber>535000003</RibbonPartNumber>
<RibbonRegionCode>0</RibbonRegionCode>
<RetransferFilmPartNumber>0</RetransferFilmPartNumber>
<RetranferFilmPercentRemaining></RetransferFilmPercentRemaining>
<RetransferFilmSerialNumber></RetransferFilmSerialNumber>
<RetransferFilmLotCode></RetransferFilmLotCode>

</Printer>
<Embosser>

<IndentRibbon>None</IndentRibbon>
<IndentRibbonType></IndentRibbonType>
<IndentRibbonRemaining></IndentRibbonRemaining>
<TopperRibbon>None</TopperRibbon>
<TopperRibbonType></TopperRibbonType>
<TopperRibbonRemaining></TopperRibbonRemaining>
<TopperRibbonSerialNumber></TopperRibbonSerialNumber>
<TopperRibbonLotCode></TopperRibbonLotCode>
<TopperRibbonPartNumber></TopperRibbonPartNumber>

</Embosser>
<Laminator>

<L1Laminate>Installed</L1Laminate>
<L1LaminateType>33624064</L1LaminateType>
<L1LaminateRemaining>65</L1LaminateRemaining>
<L1LaminateSerialNumber>e0055000008e7624</L1LaminateSerialNumber>
<L1LaminateLotCode>DPS 0913 </L1LaminateLotCode>
<L1LaminatePartNumber>508668901</L1LaminatePartNumber>
<L2Laminate>Installed</L2Laminate>
<L2LaminateType>34078720</L2LaminateType>

Visual C++, Visual C#,
and VB.NET

status

Java printer_status

 62 Interactive Mode Using the IBidiSpl Interface

<L2LaminateRemaining>97</L2LaminateRemaining>
<L2LaminateSerialNumber>e0055000008e6c08</L2LaminateSerialNumber>
<L2LaminateLotCode>DPS 0913 </L2LaminateLotCode>
<L2LaminatePartNumber>508832901</L2LaminatePartNumber>

</Laminator>
<TactileImpresser>

<TactileImpresser>Installed</TactileImpresser>
<TactileImpresserFoilType>1</TactileImpresserFoilType>
<TactileImpresserFoilRemaining>99</TactileImpresserFoilRemaining>
<TactileImpresserSerialNumber>E00550000BD68247</TactileImpresserSerialNumber>
<TactileImpresserLotCode>10292019t</TactileImpresserLotCode>
<TactileImpresserPartNumber>525067003</TactileImpresserPartNumber>

</TactileImpresser>
</PrinterSupplies3>

Element Value Description

Printer

PrintRibbon Indicates if a print ribbon is installed. The values are:
 None
 Installed

PrintRibbonType The type of ribbon installed in the printer. The value
returned is one of the supported ribbon types for the
printer, such as YMCKT, ymcKT, KT, FCMYP-KP, and so on.

RibbonRemaining The amount of unused ribbon as a percent.

RibbonSerialNumber The serial number of the ribbon.

RibbonLotCode The lot code of the ribbon.

RibbonPartNumber The part number of the ribbon.

RibbonRegionCode The region code of the ribbon.

RetransferFilmPartNumber The part number of the retransfer film. Reported for the
CR805 retransfer card printer only.

RetransferFilmPercent
Remaining

The amount of unused retransfer film as a percent.
Reported for the CR805 retransfer card printer only.

RetransferFilmSerialNumber The serial number of the retransfer film. Reported for
the CR805 retransfer card printer only.

RetransferFilmLotCode The lot code of the retransfer film. Reported for the
CR805 retransfer card printer only.

Embosser

SDK Programmer’s Reference Guide 63

IndentRibbon If the system includes an embosser, this element
indicates if indent ribbon is installed. The values are:
 None
 Installed

IndentRibbonType The type of indent ribbon installed.

IndentRibbonRemaining The amount of unused indent ribbon as a percent.

IndentRibbonSerialNumber The serial number of the indent ribbon.

IndentRibbonLotCode The lot code of the indent ribbon.

IndentRibbonPartNumber The part number of the indent ribbon.

TopperRibbon This element indicates if topping foil is installed. The
values are:
 None
 Installed

TopperRibbonType The type of topping foil installed in the printer. The
values are:
 Silver
 Gold
 Black
White
 Blue

TopperRibbonRemaining The amount of unused topping foil as a percent.

TopperRibbonSerialNumber The serial number of the topping foil.

TopperRibbonLotCode The lot code of the topping foil.

TopperRibbonPartNumber The part number of the topping foil.

Laminator

L1Laminate Indicates if the laminator L1 station has a supply
installed. The values are:
 None
 Installed

L1LaminateType The universal supply code of the supply.

Element Value Description

 64 Interactive Mode Using the IBidiSpl Interface

L1LaminateRemaining The amount of unused supply as a percent.

L1LaminateSerialNumber The serial number of the supply.

L1LaminateLotCode The lot code of the supply.

L1LaminatePartNumber The part number of the supply.

L2Laminate Indicates if the laminator L2 station has a supply
installed. The values are:
 None
 Installed

L2LaminateType The universal supply code of the supply.

L2LaminateRemaining The amount of unused supply as a percent.

L2LaminateSerialNumber The serial number of the supply.

L2LaminateLotCode The lot code of the supply.

L2LaminatePartNumber The part number of the supply.

Tactile Impression Module

TactileImpresserFoilType The type of tactile foil installed in the tactile impression
module. The foil type is returned by the firmware. The
following impresser foil types are available:
 Silver Metallic
 Gold Metallic
 Copper Metallic
 Black
White
 Clear

TactileImpresserFoilRemaining The amount of unused foil as a percent.

TactileImpresserSerialNumber The serial number of the tactile foil.

TactileImpresserLotCode The lot code of the tactile foil.

TactileImpresserPartNumber The part number of the tactile foil.

Element Value Description

SDK Programmer’s Reference Guide 65

Sample Code—Supplies Status

For working code that demonstrates supplies status, refer to the following samples:

Card Counts
Your application can get the card count information and reset the printer’s resettable card counts.

Get Card Counts

To get the card count information stored in the printer using the IBidiSpl interface, set the schema
to Printer.CounterStatus2:Read. For Java, call the GetPrinterCounterStatus2 method of the
Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

The request returns the supplies status XML file.

Status XML File for Single Input Hopper Printer
<?xml version="1.0"?>
<!--Printer counter2 xml file.-->
<CounterStatus2>

<PrinterStatus>Ready</PrinterStatus>
<CurrentPickedExceptionSlot>18</CurrentPickedExceptionSlot>
<TotalPickedExceptionSlot>18</TotalPickedExceptionSlot>
<CurrentPickedInputHopper1>328</CurrentPickedInputHopper1>
<TotalPickedInputHopper1>328</TotalPickedInputHopper1>
<CurrentPicked>346</CurrentPicked>
<TotalPicked>346</TotalPicked>
<CurrentCompleted>245</CurrentCompleted>
<TotalCompleted>245</TotalCompleted>
<CurrentRejected>84</CurrentRejected>
<TotalRejected>84</TotalRejected>
<CurrentLost>17</CurrentLost>
<TotalLost>17</TotalLost>
<CardsPickedSinceCleaningCard>226</CardsPickedSinceCleaningCard>
<CleaningCardsRun>5</CleaningCardsRun>

</CounterStatus2>

Visual C++, Visual C#,
and VB.NET

status

Java printer_status

 66 Interactive Mode Using the IBidiSpl Interface

Status XML for Six-Position Input Hopper Printer
<?xml version="1.0"?>
<!--Printer counter2 xml file.-->
<CounterStatus2>

<PrinterStatus>Ready</PrinterStatus>
<CurrentPickedExceptionSlot>3</CurrentPickedExceptionSlot>
<TotalPickedExceptionSlot>3</TotalPickedExceptionSlot>
<CurrentPickedInputHopper1>156</CurrentPickedInputHopper1>
<TotalPickedInputHopper1>156</TotalPickedInputHopper1>
<CurrentPickedInputHopper2>1</CurrentPickedInputHopper2>
<TotalPickedInputHopper2>1</TotalPickedInputHopper2>
<CurrentPickedInputHopper3>4</CurrentPickedInputHopper3>
<TotalPickedInputHopper3>4</TotalPickedInputHopper3>
<CurrentPickedInputHopper4>4</CurrentPickedInputHopper4>
<TotalPickedInputHopper4>4</TotalPickedInputHopper4>
<CurrentPickedInputHopper5>6</CurrentPickedInputHopper5>
<TotalPickedInputHopper5>6</TotalPickedInputHopper5>
<CurrentPickedInputHopper6>4</CurrentPickedInputHopper6>
<TotalPickedInputHopper6>4</TotalPickedInputHopper6>
<CurrentPicked>178</CurrentPicked>
<TotalPicked>178</TotalPicked>
<CurrentCompleted>170</CurrentCompleted>
<TotalCompleted>170</TotalCompleted>
<CurrentRejected>8</CurrentRejected>
<TotalRejected>8</TotalRejected>
<CurrentLost>0</CurrentLost>
<TotalLost>0</TotalLost>
<CardsPickedSinceCleaningCard>164</CardsPickedSinceCleaningCard>
<CleaningCardsRun>1</CleaningCardsRun>

</CounterStatus2>

Element Value Description

CurrentPickedExceptionSlot Number of cards picked from the exception slot.

TotalPickedExceptionSlot Total number of cards picked from the exception slot.

CurrentPickedInputHopper1–
Current PickedInputHopper6

Number of cards picked from the input hopper. For a
multi-hopper printer, the number of cards picked from
each hopper is returned. This can be reset at the printer
with proper permission.

TotalPickedInputHopper1–
TotalPickedInputHopper6

Total number of cards picked from the input hopper. For
a multi-hopper printer, the total number of cards picked
from each hopper is returned.

CurrentPicked Number of cards picked by the printer. This can be reset
at the printer with proper permission.

TotalPicked Total number of cards picked by the printer.

SDK Programmer’s Reference Guide 67

Reset Card Counts

To reset the resettable card count values stored in the printer using the IBidiSpl interface, set the
schema to Printer.ResetCardCount:Set. For Java, call the ResetCardCounts method of the
Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

Sample Code—Card Counts

For working code that demonstrates card counts, refer to the following samples:

CurrentCompleted Number of cards successfully completed by the printer.
This can be reset at the printer with proper permission

TotalCompleted Total number of cards successfully completed by the
printer.

CurrentRejected Number of cards that were rejected by the printer
because they failed or were canceled. This can be reset
at the printer with proper permission.

TotalRejected Total number of cards that were rejected by the printer
because they failed or were canceled.

CurrentLost A calculated value for the cards that were neither
completed nor rejected. This can be reset at the printer
with proper permission.

TotalLost Total number of cards that were neither completed nor
rejected.

CardsPickedSinceCleaningCard Number of cards the printer has picked since it was
cleaned. This resets when the first card is picked after
the printer has been cleaned.

CleaningCardsRun Number of cleaning cards that have been run through
the printer.

Visual C++, Visual C#,
and VB.NET

status—Use to obtain card count information
printer_control—Use to reset card counts

Java printer_status—Use to obtain card count information
printer_control—Use to reset card counts

Element Value Description

 68 Interactive Mode Using the IBidiSpl Interface

Hopper Status
Your application can get the status of the input hoppers (whether or not cards are present in the
hopper) for the CR805 retransfer card printer.

Get Hopper Status

To get the hopper status for the printer using the IBidiSpl interface, set the schema to
Printer.Hopper:Status.Get. For Java, call the GetHopperStatus method of the Java helper DLL
(dxp01sdk_IBidiSpl_interop.dll).

The request returns the hopper status XML file.

Input Hopper Status XML File for a Retransfer Card Printer
<!-- For CR805 printer where hopper detection is available -->
<?xml version="1.0"?>
<HopperStatus>

<PrinterStatus>Ready</PrinterStatus>
<HopperDetection>Available</HopperDetection>
<HopperInformation Name="Exception" Type="Input" Status="Cannot Detect"
CardStock="CardStock1"/>

<HopperInformation Name="Hopper1" Type="Input" Status="Cards Present"
CardStock="CardStock1"/>

<HopperInformation Name="Hopper2" Type="Input" Status="Cards Present"
CardStock="CardStock1"/>

<HopperInformation Name="Hopper3" Type="Input" Status="Empty"
CardStock="CardStock1"/>

<HopperInformation Name="Hopper4" Type="Input" Status="Empty"
CardStock="CardStock1"/>

<HopperInformation Name="Hopper5" Type="Input" Status="Empty"
CardStock="CardStock1"/>

<HopperInformation Name="Hopper6" Type="Input" Status="Empty"
CardStock="CardStock1"/>

</HopperStatus>

The hopper status information retrieved from the printer depends on whether the
printer has a single hopper or a multi-hopper.
 For a multi-hopper printer, the firmware cannot detect if a card is present in the

exception hopper. The firmware always returns the status “Cannot detect.”
 For a single-hopper printer, the firmware can detect if a card is present in the

exception hopper. The firmware returns the status “Cards Present” or “Empty.”

SDK Programmer’s Reference Guide 69

Input Hopper Status XML File for a Non-Retransfer Printer

The hopper status is not available for a non-retransfer printer. The following XML shows the
information returned for a non-retransfer printer.

<!-- For non-retransfer printer where hopper cannot be detected. -->
<?xml version="1.0"?>
<HopperStatus>

<PrinterStatus>Ready</PrinterStatus>
<HopperDetection>Unavailable</HopperDetection>
<HopperInformation Name="None" Type="" Status="" CardStock=""/>
<HopperInformation Name="None" Type="" Status="" CardStock=""/>
<HopperInformation Name="None" Type="" Status="" CardStock=""/>
<HopperInformation Name="None" Type="" Status="" CardStock=""/>
<HopperInformation Name="None" Type="" Status="" CardStock=""/>
<HopperInformation Name="None" Type="" Status="" CardStock=""/>

</HopperStatus>

Locking
If your printer is equipped with locks, your application can lock and unlock the printer, as well as
change the password needed to unlock the printer. The IBidiSpl requests used to do this are:

 Printer.Locks:ChangeLockState:Set

 Printer.Locks:ChangePassword:Set

Java uses the following functions with the Java helper DLL (dxp01sdk_IBidiSpl_interop.dll):

 SetPrinterLockState

 ChangeLockPassword

Lock or Unlock the Printer
Your application must create an XML structure with the lock state and password. The driver
receives this XML formatted data as a BIDI_BLOB.

<?xml version="1.0"?>
<ChangeLocks>

<LockPrinter>%d</LockPrinter>
<CurrentPassword>%ls</CurrentPassword>

</ChangeLocks>

The CurrentPassword value must be set to the correct password to successfully lock or unlock the
printer.

LockPrinter Value Description

1 Lock printer

2 Unlock printer

 70 Interactive Mode Using the IBidiSpl Interface

Change the Lock/Unlock Password
Your application must create an XML structure with the lock state and password. The driver
receives this XML formatted data as a BIDI_BLOB.

<?xml version="1.0"?>
<ChangeLocksPassword>

<LockPrinter>1</LockPrinter>
<CurrentPassword>test</CurrentPassword>
<NextPassword>abcd</NextPassword>

</ChangeLocksPassword>

Your application must supply both the correct CurrentPassword and the new password in the
NextPassword element.

Password Rules

Use the following rules to make sure that the password is considered valid by the printer:

 A password must have at least 4 legal characters. Legal characters are:

 alphanumeric (English) (A–Z, a–z, 0–9)

 plus (+)

 slash (/)

 dollar sign ($)

 A password is case sensitive.

 Empty quotes ("") are used to disable the locking password.

If the printer is configured to not require a password, the printer locks or unlocks ignoring
whatever password is sent.

 When the locking password is changed, the NextPassword value becomes the
CurrentPassword for the next attempt to lock or unlock the printer.

When you send empty quotes ("") as the NextPassword value, the printer no longer requires
a password to lock or unlock.

LockPrinter is always set to 1. Changing the lock password locks the printer if it is
unlocked.

SDK Programmer’s Reference Guide 71

Determine the Success of a Lock Request
For both lock requests, the status is returned in another XML structure. The following is an
example of an attempt to lock a printer that does not have locks installed.

<?xml version="1.0"?>
<!--Printer status xml file.-->
<PrinterStatus>

<ClientID>agarwas-Win7_{32DCD216-3B4E-4806-9661-3F80D6D99F72}</ClientID>
<WindowsJobID>0</WindowsJobID>
<PrinterJobID>0</PrinterJobID>
<ErrorCode>511</ErrorCode>
<ErrorSeverity>2</ErrorSeverity>
<ErrorString>Message 511: Cannot lock or unlock the printer. Locks are not
installed.</ErrorString>
<DataFromPrinter><![CDATA[]]></DataFromPrinter>

</PrinterStatus>

Sample Code—Locking

For working code that demonstrates the lock operation, refer to the following samples:

Visual C++, Visual C#,
and VB.NET

locks

Java locks

 72 Interactive Mode Using the IBidiSpl Interface

Change Color Settings

The color adjust settings consist of 33 values for three color arrays: Red, Green, and Blue. Each
array has 11 values that you can set to customize the color printing on a card. Your application
can adjust how colors are printed by the printer.

Each color contains 11 comma-separated integers in a range from -25 to 25. These adjust the
color settings to a value between -10% and +10% of the default setting.

Only the following characters are allowed when entering values:

 Plus (+)

 Minus (-)

 Comma (,)

 0 through 9

Keep the following in mind when entering the values:

 Negative values must start with a minus (-). Positive values may start with a plus (+) or have
no sign.

 The value zero cannot be preceded by a sign character, so plus or minus zero (for example, -0
or +0) is not allowed.

 Spaces are not allowed.

 A value that is not valid, such as a format error or an out-of-range value, causes a job error,
and no changes are made to the settings.

Change the Color Values
To change the color values, your application calls the IBidiSpl interface with the schema set to
Printer.AdjustColor:Set. For Java, call the SetColorAdjust method of the Java helper DLL
(dxp01sdk_IBidiSpl_interop.dll).

It sends an XML structure containing all 33 settings as described in the ADJUST_COLOR_XML.

?xml version="1.0"?>
<AdjustColor>

<RedColorChannel>%ls</RedColorChannel>
<GreenColorChannel>%ls</GreenColorChannel>
<BlueColorChannel>%ls</BlueColorChannel>

</AdjustColor>

 The color settings apply only to SD-, CD-, and CE-series direct-to-card printers
running D3.17.4 or newer firmware, and Sigma direct-to-card printers running D4
firmware.

We recommend that you become familiar with color theory before adjusting
color values.

SDK Programmer’s Reference Guide 73

Change One Color Channel
The following example changes the settings for the Red color channel, while leaving the Green
and Blue color channels unchanged.

<?xml version="1.0"?>
<AdjustColor>

<RedColorChannel>1,2,-1,0,25,6,-19,12,13,14,15</RedColorChannel>
<GreenColorChannel></GreenColorChannel>
<BlueColorChannel></BlueColorChannel>

</AdjustColor>

Change Two Color Channels
The following example changes the Green and Red color channels, while leaving the Blue color
channel unchanged.

<?xml version="1.0"?>
<AdjustColor>

<RedColorChannel>1,2,-1,0,25,6,-19,12,13,14,15</RedColorChannel>
<GreenColorChannel>0,10,5,0,-7,-10,-5,0,0,0,0</GreenColorChannel>
<BlueColorChannel></BlueColorChannel>

</AdjustColor>

Set the Color Values to Default Settings
To set one or more color channels back to their default settings, your application calls the
IBidiSpl interface with the schema set to Printer.SetDefaultColor:Set. For Java, call the
DefaultColorAdjust method of the Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

It sends an XML structure that specifies which color channels should be set to default as
described in the DEFAULT_COLOR_XML.

<?xml version="1.0"?>
<SetDefaultColor>

<RedColorChannel>%ls</RedColorChannel>
<GreenColorChannel>%ls</GreenColorChannel>
<BlueColorChannel>%ls</BlueColorChannel>

</SetDefaultColor>

Set All Color Channels to Default
The following example returns all color channels to their default values.

<?xml version="1.0"?>
<SetDefaultColor>

<RedColorChannel>true</RedColorChannel>
<GreenColorChannel>true</GreenColorChannel>
<BlueColorChannel>true</BlueColorChannel>

</SetDefaultColor>

 74 Interactive Mode Using the IBidiSpl Interface

Set Two Color Channels to Default
The following example returns the Red and Green color channels to their default values, but
leaves the Blue color channel unchanged.

<?xml version="1.0"?>
<SetDefaultColor>

<RedColorChannel>true</RedColorChannel>
<GreenColorChannel>true</GreenColorChannel>
<BlueColorChannel>false</BlueColorChannel>

</SetDefaultColor>

Sample Code—Color Adjust

For working code that demonstrates the color adjust operation, refer to the following samples:

Change Color Values in Printer Manager or Printer
Dashboard

The color adjust settings also are available through the Printer Manager web interface and the
Printer Dashboard.

1. Log on to Printer Manager at the WebService access level, or sign on to the Printer
Dashboard as Service.

2. In Printer Manager, select Printer Setting > Print. In the Printer Dashboard, select
Configuration > Settings >Print.

3. Enter the values for the Color Adjust settings you want to change:

 ColorAdjustB[0–10]

 ColorAdjustG[0–10]

 ColorAdjustR[0–10]

The allowed range for each setting is [-25 – 25].

4. In Printer Manager, click Set Current to save your changes. In the Printer Dashboard, click
Save.

Visual C++, Visual C#,
and VB.NET

printer_control

Java printer_control

SDK Programmer’s Reference Guide 75

Activate or Deactivate the Printer
Your application can activate or deactivate the printer when it will be out of service and you want
to guarantee that it is not used to produce cards. The printer can be activated later to re-enable it
for card production. The IBidiSpl request used to do this is Printer.ActivatePrinter:Set.
For Java, call the ActivateOrDisablePrinter method of the Java helper DLL (dxp01sdk_IBidiSpl_
interop.dll).

Your application must create an XML structure with the activation state and password. The driver
receives this XML formatted data as a BIDI_BLOB.

<?xml version="1.0"?>
<ActivatePrinter>

 <Activate>%d</Activate>
 <Password>%ls</Password>

</ActivatePrinter>

 To deactivate the printer, the password value must be set to the valid password.

 To activate the printer, the password value must match the password that was used to
deactivate the printer.

 The password is reset when the printer is activated. This allows the application to use any
valid password to deactivate the printer in the future.

 When a deactivate command is successful, the printer’s front panel LCD displays Print Job
queue is deactivated. A driver SDK status action returns the PrinterStatus as unavailable.

 If the command contains an invalid password, the SDK returns a 500 in the ErrorCode
element of the returned PrinterStatus structure.

Refer to “Locking” on page 69 for more information about setting or changing the password.

Activate Value Description

1 Activate printer

0 Deactivate printer

Caution: If the password used to deactivate the printer is lost, the printer cannot
be returned to the activated state. The printer must be replaced.

 76 Interactive Mode Using the IBidiSpl Interface

Sample Code—Activate or Deactivate Printer
For working code that demonstrates the activate or deactivate operation, refer to the following
samples:

Change the Printer State
Your application can change the printer state to Online, Offline, or Suspended. An application can
print only when the printer state is Online. You can run maintenance operations when the printer
state is Suspended. A printer that is Offline cannot be used. The IBidiSpl request used to do this
is: Printer.ChangePrinterState:Set. For Java, call the ChangePrinterState method of the Java
helper DLL (dxp01sdk_IBidiSpl_interop.dll).

Your application must create an XML structure with the printer state. The driver receives this XML
formatted data as a BIDI_BLOB.

<?xml version="1.0"?>
<ChangePrinterState>

 <State>%d</State>
</ChangePrinterState>

Sample Code—Change the Printer State
For working code that demonstrates the printer state operation, refer to the following samples:

Visual C++, Visual C#,
and VB.NET

locks

Java locks

State Value Description

0 Online

1 Suspended

2 Offline

Visual C++, Visual C#,
and VB.NET

printer_state

Java printer_state

SDK Programmer’s Reference Guide 77

Restart the Printer
Your application can restart a printer using the IBidiSpl interface with the schema set to
Printer.Restart:Set. For Java, call the RestartPrinter method of the Java helper DLL
(dxp01sdk_IBidiSpl_interop.dll).

Sample Code—Restart Printer
For working code that demonstrates a printer restart, refer to the following samples:

Shut Down the Printer
Your application can shut down a printer using the IBidiSpl interface with the schema set to
Printer.PowerDown:Set. Printer shutdown is not supported by Java.

Sample Code—Shut Down Printer
For working code that demonstrates a printer shutdown, refer to the following samples:

Visual C++, Visual C#,
and VB.NET

printer_control

Java printer_control

Visual C++, Visual C#,
and VB.NET

printer_control

Java Not available in Java.

 78 Interactive Mode Using the IBidiSpl Interface

Interactive Mode Best Practices
 When you use interactive mode operations for card personalization, the driver does not

accept a job until the interactive operations for the active job complete. Your application
must be able to manage the card production queue and retry a job if the job request is
denied because another job is active. Refer to “Start and End an Interactive Job” on page 27.

 Your application should always verify that the printer is online before starting a job. Refer to
“Installed Printer Status, Supplies Status, and Counter Status” on page 55 for information
about how to request and interpret the printer status to determine if the printer is online.

 Your application should always check the Printer Status returned by an IBidiSpl request to
determine if the request succeeded or failed.

 When recovering from an error while in interactive mode, always use the PrinterJobID value
returned by the Start Job request. The currently active job in the printer is canceled if your
application sends a cancel action with a printer job ID of 0. Unless this printer is dedicated to
your application, the currently active job may not be the job you intend to cancel.

A

SDK Programmer’s Reference Guide A-1

Appendix A: Error Description
Strings

Message Description

100 Request not supported

101 Job could not complete

102 Card not in position

103 Printer problem

104 Critical problem

105 Magstripe data error

106 Magstripe data not found

107 Magstripe read data error

108 Magstripe read no data

109 Print ribbon problem

110 Print ribbon out or missing

111 Card not picked

112 Card hopper empty

113 Close cover to continue

114 Cover opened during job

116 Magstripe not available

117 Reader not available

118 Print ribbon type problem

A-2 Error Description Strings

119 Print ribbon not supported

120 User paused the printer

121 Print ribbon not identified

122 Magstripe format problem

123 Insert new card side 1 up

124 Insert same card side 2 up

125 Emboss critical error

126 Emboss format error

127 Emboss transport error

128 Embosser card jam

129 Embosser topper jam

130 Embosser card entry jam

131 Embosser card exit jam

132 Embosser card stack full

133 Embosser card reject full

135 Indent ribbon supplies out

136 Indent ribbon break

137 Embosser wheel error

138 Embosser indent error

139 Lost card, open emboss cover

140 Embosser not available

141 Close emboss cover

142 Emboss cover error

143 Topping foil problem

144 Topping foil out

Message Description

SDK Programmer’s Reference Guide A-3

145 Topping foil type problem

146 Topping foil support err

147 Topping foil no tag found

149 Option not installed

150 Print while unlocked

151 Failed to lock

152 Insert new card side 2 up

153 Insert same card side 2 up

166 C2 supply out or missing

167 C2 supply not identified

168 C2 supply not supported

170 Insert new card side 1 up

171 Insert same card side 1 up

172 Insert cleaning card

173 Improper shutdown

175 C2 supply error

176 C2 supply type error

177 Laminator not available

196 Laminator error critical

197 Laminator entry card problem

198 L1 area card problem

199 L2 area card problem

200 Laminator exit card problem

201 L1 supply problem

202 L1 supply out or missing

Message Description

A-4 Error Description Strings

203 L1 supply type problem

204 L1 supply not supported

205 L1 supply not identified

206 L2 supply problem

207 L2 supply out or missing

208 L2 supply type problem

209 L2 supply not supported

210 L2 supply not identified

211 L1 heater problem

212 L2 heater problem

213 L1 heater sensor problem

214 L2 heater sensor problem

215 L1 heater roller problem

216 L2 heater roller problem

217 Debow problem

218 Impresser problem

219 Impresser sensor problem

220 Impresser heater problem

221 Bar code scanner problem

222 Firmware version mismatch

223 Laminator system mismatch

224 Supply region not valid

225 Rewrite config mismatch

227 C2 waiting for roller temp

228 C1 printhead error

Message Description

SDK Programmer’s Reference Guide A-5

229 C2 heat sensor error

230 C2 heater error

231 C2 heated roller motion error

232 Retransfer debow error

233 Smart card contact fail

234 K1 transport card jam

235 K2 transport card jam

236 Flipper module rotate error

237 C1 supply out or missing

238 C1 supply not identified

239 C1 supply not supported

240 C1 supply error

241 C1 supply type error

242 RT1 reject tray full

243 Card lost

245 Configuration error

250 Card indexer error

251 Laser position error

252 Laser template error

253 Laser horizontal data error

254 Laser not available

255 Laser cover open

256 Laser interlock open

257 Laser air filter missing

258 Laser not detected

Message Description

A-6 Error Description Strings

259 Laser firmware error

260 Laser control error

261 Laser option not supported

262 Vision operation failed

263 Laser power board error

264 Lost card in laser

265 Laser card entry jam

266 Laser card exit jam

267 Laser hardware failure

268 Laser setup error

269 Laser setup name length error

270 Laser text length error

271 Laser card output full

272 Laser card reject full

273 Laser output area error

274 Vision not available

275 Multi-hopper error

276 Multi-hopper card jam

277 Multi-hopper pick error

278 Insert cleaning card in H2

279 Card stock not compatible

280 TIM lost card

281 TIM heater error

282 TIM supply error

283 TIM foil error

Message Description

SDK Programmer’s Reference Guide A-7

284 TIM drive error

285 TIM supply read error

286 TIM supply write error

288 TIM not detected

289 TIM error

291 TIM foil not supported

292 TIM card jam

293 TIM door open

294 Cleaning Required

295 Settings error

297 Option Tag Error

298 Option Tag Success

500 The printer is not available

501 The printer connection was lost

502 The card data is missing or is not usable

504 The card data is missing or is not usable

505 USB communication issue

506 A card is currently processing

507 The printer is unlocked

508 The printer is shutting down

509 The printer is offline or suspended

510 The printer is unlocked

511 Cannot lock or unlock the printer. Locks are not installed.

512 Cannot lock or unlock the printer. The password is incorrect or
invalid.

Message Description

A-8 Error Description Strings

513 Cannot lock or unlock the printer. The printer is busy.

514 Cannot lock or unlock the printer. The cover is open.

515 Failed to lock or unlock the printer. The locks did not function.

516 Timeout expired before bar code could be read.

517 Wrong printer job ID.

518 Unable to print.

519 File import failed.

520 Hopper number not valid.

521 Start job failed.

522 Failed to read laser files.

523 Apply topcoat or overlay to the card

Message Description

B

SDK Programmer’s Reference Guide B-1

Appendix B: Use Eclipse to
Create Java Samples

The XPS Driver SDK Java samples work with either the 32- or 64-bit Java runtimes. Before you can
run the sample code that is in the samples folder, you first must create a common_java.jar file
and then generate a runnable JAR file for each sample that you want to use. This chapter
describes how to use the Eclipse development environment to generate the JAR files.

The examples in this chapter were created using Eclipse Version: Oxygen.31 Release (4.7.3a) and
Java version 1.8.

Extract the SDK Files
1. Make sure a Java runtime is installed on your computer.

Open a command prompt window and Issue the command “java -version” from a command
line. The following example shows the type of information that displays:

C:\Users\username>java -version

java version "1.8.0_181"
Java(TM) SE Runtime Environment (build 1.8.0_181-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.181=b13, mixed mode)

2. Download the XPS_Card_Printer_SDK.zip file to a folder. For example:
C:\java\XPS_Card_Printer_SDK.

3. Extract the XPS Driver SDK zip file to the folder. The folder contains the following files:

C:\java\xps_card_printer_sdk>dir

Directory of C:\java\xps_card_printer_sdk

07/16/2018 01:45 PM <DIR> exes
06/12/2018 04:05 PM 488,447 Readme.pdf
07/16/2018 01:45 PM <DIR> samples
06/06/2018 09:26 AM 1,362,250 SDK_Dev_Guide.pdf
07/06/2018 03:51 PM 17,103,709 XPS_Card_Printer_SDK.zip

You also can use the runnable JAR files that are included in the SDJ jars folder. Refer
to Appendix C: "Use the SDK Java Samples” for complete information.

B-2 Use Eclipse to Create Java Samples

Create an Eclipse Workspace
1. Start Eclipse and create a new workspace.

2. Import the SDK samples.

a. When Eclipse opens, select File > Import.

SDK Programmer’s Reference Guide B-3

b. In the Import window, select General > Existing Projects into Workspace and click Next.

c. Browse to the samples\java folder under the folder you created in step 2 of “Extract the
SDK Files” on page B-1 and click OK.

B-4 Use Eclipse to Create Java Samples

d. The Java sample files display in the Projects list. All the files already should be selected. If
they are not, click Select All.

Select Copy projects to workspace as some samples have file location dependencies.

e. Click Finish.

SDK Programmer’s Reference Guide B-5

Build the common_java JAR File
You must build a common_java package before running the Java samples. The common_java
package is imported into each sample.

1. In the Eclipse Package Explorer, right-click the common_java project folder and select
Properties.

B-6 Use Eclipse to Create Java Samples

2. In the Properties window, select Java Build Path and click the Libraries tab.

Double-click the jna.zip entry to update the jna.zip file location.

3. Locate the jna.zip file in the C:\Java\XPS_Card_Printer_SDK\samples\java\Library folder.
Select the file and click Open.

SDK Programmer’s Reference Guide B-7

4. Click Apply and Close in the Properties window.

5. In the Eclipse Package Explorer, right-click the common_java project folder and select Export.

B-8 Use Eclipse to Create Java Samples

6. In the Export window, select Java > JAR file and click Next.

SDK Programmer’s Reference Guide B-9

7. In the JAR Export window, do the following:

a. Make sure that common_java is the only item selected in the resources pane.

b. Clear the .classpath and .project check boxes.

c. Make sure that Export generated class files and resources is selected.

d. Select the export destination. Browse to the eclipse-workspace you created in step 1 of
“Create an Eclipse Workspace” on page B-2. Select the common_java project folder and
name the JAR file common_java.jar. Click Save.

8. Click Finish.

B-10 Use Eclipse to Create Java Samples

Create Runnable JAR Files for Each Java Sample
After you build the common_java.jar file, you can create runnable JAR files for each Java sample
that you want to use.

1. In the Eclipse Package Explorer, right-click the project folder of the sample you want to run (in
this example, barcode_park) and select Properties.

The following example illustrates creating a runnable JAR file for the barcode_park
sample. Use the same procedure for each Java sample.

SDK Programmer’s Reference Guide B-11

2. In the Properties window, select Java Build Path and click the Libraries tab.

Double-click the jna.zip entry to update the jna.zip file location.

3. Locate the jna.zip file in the C:\Java\XPS_Card_Printer_SDK\samples\java\Library folder.
Select the file and click Open.

B-12 Use Eclipse to Create Java Samples

4. In the Properties window, the common_java.jar should point to the correct location.

If it indicates that the location is missing, double-click the file entry and locate the common_
java.jar file you created in “Build the common_java JAR File” on page B-5.

5. Click Apply and Close in the Properties window.

SDK Programmer’s Reference Guide B-13

6. In the Package Explorer, select barcode_park > Referenced Libraries > common_java.jar >
amd64 and x86.

Verify that dxp01sdk_IBidiSpl_interop.dll displays for both 32-bit and 64-bit systems.

7. Select barcode_park > src. Right-click the project package, com.datacard.xpsprinter.sdk.
examples and click Export.

B-14 Use Eclipse to Create Java Samples

8. In the Export window, select Java > Runnable JAR file and click Next.

9. Select the Launch configuration that corresponds to your project.

SDK Programmer’s Reference Guide B-15

10. Specify the Export destination.

a. Browse to the Eclipse workspace you created in “Create an Eclipse Workspace” on
page B-2 and select barcode_park.

b. Enter the name of the sample file, barcode_park.jar, and click Save.

11. In the Runnable JAR file Export window, make sure that Extract required libraries into
generated JAR is selected.

The Eclipse workspace is the required destination for all Java samples.

B-16 Use Eclipse to Create Java Samples

12. Click Finish.

If the referenced library warning displays, click OK.

13. Repeat this process for each Java sample that you want to use.

Run the JAR File
You can run the JAR file to see help information and the command line options.

Open a command prompt window in the location of the JAR file in the Eclipse workspace and
enter the command java -jar barcode_park.jar.

C:\Users\korask\eclipse-workspace-xps_driver_sdk\barcode_park>java -jar barcode_
park.jar

barcode_park.jar demonstrates interactive mode parking a card in the barcode
reader, moving the card from the station, and options to print and poll
for job completion. Uses hardcoded data for printing.

java -jar barcode_park.jar -n <printername> [options]

options:
-n <printername>. Required. Try -n "XPS card printer"
-b parks the card such that the barcode on the back side of the card

can be read. Default operation is to park the card such that the
barcode on the front side of the card can be read.

-c poll for job completion
-p Print sample text on the card.
-f <Front | Back>. Flip card on output
-i <input hopper>. Defaults to input hopper #1.

Examples:
java -jar barcode_park.jar -n “XPS Card Printer” -p

Parks a card such that the barcode on the front side of the card can be read,
asks you to continue (i.e., barcode read was successful) or reject (i.e. barcode
read was not successful). If the read was successful, sample images are printed
on one or both sides of the card.

java -jar barcode_park.jar -n “XPS Card Printer” -b

Parks a card such that the barcode on the front side of the card can be read,
asks you to continue or reject and then does what you requested.

SDK Programmer’s Reference Guide B-17

Troubleshooting

Recommendations
Use the following recommendations when creating or working with the Java samples.

 Create a new Eclipse workspace before you make changes to the Java samples. This maintains
the original samples in their own workspace in case you need them.

 Create a new Eclipse workspace whenever you install a new version of the SDK. The helper
dll, dxp01sdk_IBidiSpl_interop.dll, is copied to each sample in the workspace. When you
create a new workspace it ensures that the dll is always up-to-date.

 The helper dll, dxp01sdk_IBidiSpl_interop.dll, is backward compatible with previous versions
of the SDK. However, because the method used to build the Java samples has changed, make
sure that you create a new Eclipse workspace to use the current version of the dll.

Error Solution

Unable to find dxp01sdk_
IBidiSpl_interop.dll

Make sure that you exported the common_java jar file at the
project folder level instead of at the common_java package
level. Refer to “Build the common_java JAR File” on page B-5.

You must rebuild your Java samples when you install a new version of the SDK.

Select and export

Do not export

B-18 Use Eclipse to Create Java Samples

C

SDK Programmer’s Reference Guide C-1

Appendix C: Use the SDK
Java Samples

Overview
The SDK Java files that are included in the jars folder are runnable JAR files that you can use
without having to build the files yourself. This is similar to the compiled samples for Visual C++,
Visual C#, and VB.NET located in the exes folder.

The Java samples were created and tested using Java version 8, update 181. We recommend that
you install and use that version with the samples.

The Java SDK JAR files work with either the 32- or 64-bit versions of Java 8, update 181.

Use the Java Samples
The Java sample .jar files are placed in the jars folder on your computer when you extract the SDK
zip file (refer to “Installation” on page 3). The common_java.jar file is included in the folder and is
used by all the other samples. In addition, a separate laser folder in the jars folder contains the
files used for engraving on a desktop laser system.

Do the following to run a JAR file:

1. Open a command window and point to the jars directory on your computer. For example,

C:\XPS Driver_SDK\jars>

 You need to know the location where the Java version 8, update 181 java.exe file
is installed on your computer to run the JAR files. java.exe is located in the bin
folder.
For example: C:\Program Files\Java\jre1.8.0_181\bin.

 If you run the Java samples with a later version of Java, such as Java version 9 or
newer, Java may issue a warning message indicating that “an illegal reflective
access operation has occurred.” This does not affect the Java samples and they
run without problems.

C-2 Use the SDK Java Samples

2. Enter the command to run the JAR file. You must point to the java.exe file in the Java bin
directory on the computer. Then, enter the name of the JAR file you want to run.

For example, enter the following command to run the barcode_park.jar sample to see help
information and the command line options:

C:\XPS Driver_SDK\jars>C:\Progra~1\Java\jre1.8.0_181\bin\java.exe -jar barcode_park.jar

After you run a Java sample, the Java helper dll file, dxp01sdk_IBidiSpl_interop.dll, is placed in
the jars folder. The dxp01sdk_IBidiSpl_interop.dll file is used by the sample .jar files to
communicate with the Card Printer Driver. The file is included in the common_java.jar file and is
extracted to the jars folder when any of the sample .jar files is executed.

This example assumes that the java.exe file is in C:\Program Files\Java on a
Windows 64-bit system. The command uses the short name for the Program
Files directory (Progra~1).
The location of the java.exe file can vary depending on where Java is installed on
your computer or if you use a 32-bit Windows system.

D

SDK Programmer’s Reference Guide D-1

Appendix D: Suppress the
Driver Message Display

If you want your application to present printer and driver messages to the user and resolve errors
directly, you can suppress the display of messages by the driver. This is known as “silent mode.”

Enable Driver Silent Mode
1. Silent mode is enabled when the following registry setting is present and the data is set

correctly. This registry key must be created manually.

2. The driver checks the DXP01SilentMode setting at startup.

Key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\Printers

Value Name DXP01SilentMode

Value Type REG_DWORD

Data 1 = enable, any other value disable

To guarantee that the setting takes effect, restart the computer after you create or
modify the registry setting.

D-2 Suppress the Driver Message Display

Silent Mode Operation Notes
 Enabling silent mode causes suppression of pop-up messages for all instances (printers) of

the XPS Card Printer Driver for all user accounts on the system.

 The SDK application can retrieve the error message any time using dxp01sdk:PRINTER_
MESSAGES. In addition, most of the SDK calls include printer errors as part of the status
information returned to the application.

 The application can cancel jobs using the SDK, including canceling all jobs in the printer.
When “cancel all jobs” is requested, the printer cancels all of its jobs. The driver also cancels
all the driver jobs that are in an error state.

 When the error is a driver condition (a 500-level message), the application must resolve the
error because the printer operator won’t be aware of the issue (the printer does not issue an
error). The driver will not process the next job until the 500-level message is resolved. The
application can either use “cancel all jobs” to cancel the job, or it can issue job-specific cancel
or resume commands to recover from the error.

The printer operator can cancel the job using the LCD panel. When this happens,
an error is removed from the driver automatically. Make sure that the application
accounts for this possibility.

E

SDK Programmer’s Reference Guide E-1

Appendix E: SDK CE870 Kiosk
System Support

Overview
The XPS Card Printer Driver supports the CE870 Kiosk system. To use the Card Printer Driver and
SDK with the CE870 kiosk system, you need the following:

The CE870 kiosk system is shipped with the firmware options that support the kiosk already
enabled.

For the Card Printer Driver to support the CE870 kiosk system, the driver must be able to
recognize the kiosk system. This is controlled by the DriverEnable option in the printer firmware.
The option is set using one of the following methods:

 The DriverEnable option is enabled during manufacturing.

 A secure settings file is used to enable the DriverEnable option.

When the DriverEnable setting is enabled, the Card Printer Driver uses the Printer Manager
WebService-access level option Printer Setting > EmbossModuleKioskSupport to detect the
kiosk system. The driver configures itself to Kiosk mode and uses the following kiosk DPCL
actions:

 Submit action EmbCardDataKiosk instead of EmbCardData

 Send Dispense with no timeout instead of the Eject command

Firmware D3.17.5 or newer

XPS Card Printer Driver 7.4.673 or newer

SDK 7.4.097 or newer

The DriverEnable option cannot be changed by a user.

E-2 SDK CE870 Kiosk System Support

The following Printer Manager settings also are used with a kiosk system. These are WebService-
access level settings only. The CEM Embosser Service Manual contains complete information
about setting up a kiosk system.

When the Card Printer Driver detects a kiosk system:

 The Kiosk option displays in the Printer Properties Status tab.

 PRINTER_INFO2 is updated with the Kiosk option. This allows an SDK application to query the
printer for the kiosk option.

Retrieve the Status of a Kiosk Job
An application can retrieve the status of a card job in a kiosk system. The application should poll
the kiosk system for job completion until the job state value is returned. The JobState for a kiosk
system can have one of the following values: CardReadyToRetrieve or CardNotRetrieved.

Refer to “Get the Status of an Interactive Job” on page 29 for complete information about how to
retrieve the job status and the JobState values for a kiosk system.

Printer Setting > Emboss >
KioskRetrieveLocation

Specifies where to place a card that was dispensed via kiosk
output, but not taken by the user (from the embosser or from
an external card reader), from the following:
OutputHopper—Place cards in the embosser output hopper.

This is the default setting.
 RejectTray—Place cards in the embosser reject tray.

Printer Setting > Emboss >
KioskWaitDelay

Sets the maximum amount of time that a card is parked inside
the kiosk assembly for a user to take until the card is retracted.
The default is 60 seconds. When set to 0, the system waits
indefinitely for the user to take the card.

You can set the Card Printer Driver to run in silent mode. Refer to Appendix D:
"Suppress the Driver Message Display”.

F

SDK Programmer’s Reference Guide F-1

Appendix F: Print a UV Photo

Printing a photo with the UV panel of the ribbon is a special case of monochrome printing.
However, unlike printing that uses the K panel, the UV ink is lighter than the card background
when illuminated with a UV light source (it becomes the white in the image). Because of this, a
photo printed using the UV panel must reverse the pixel values of the 1-bpp photo image (that is,
you need to use the negative of the image).

You can use IRFanView (http://www.irfanview.com/) to modify a color photo to print properly
using the UV panel.

1. Open the image you want to modify using IRFanView.

F-2 Print a UV Photo

2. Select Decrease Color Depth from the Image menu and then select the following options in
the Decrease color depth dialog box.

 2 Colors (black/white) (1 BPP)

 Use Floyd-Steinberg dithering (for max 256 colors)

3. Click OK.

This changes the image so that it looks like the following:

SDK Programmer’s Reference Guide F-3

4. Select Negative (invert image) from the Image menu.

The image then looks like the following. This step is required because the UV ink becomes the
“white” of the image when exposed to a UV light source.

5. Select Replace Color from the Image menu. Replace the source color (black) with the new
color (RGB:217,217,217) in the Replace Color dialog box. The Card Printer Driver recognizes
217:217:217 as the UV “color” and prints those elements using the UV panel of the ribbon.

F-4 Print a UV Photo

6. Click OK.

The image now looks like the following. The black pixels in the image have been replaced
with 217:217:217.

7. Save the converted image as a .PNG file.

When you use the modified image, be careful not to transform it in any way that
might introduce other colors into the image.

 Some images, such as a logo, might display better if they are not reversed.

G

SDK Programmer’s Reference Guide G-1

Appendix G: References

With Microsoft .NET Framework, application developers have a rich set of printing and print
system management APIs. At the core of this functionality is the XPS print path. The following link
provides an overview of XPS Windows printing:

https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/printing-overview

A PrintTicket defines the settings of a print job. A PrintTicket object is an easy-to-work-with
representation of a certain type of XML document called a PrintTicket document. The following
link explains more about PrintTicket class:

https://msdn.microsoft.com/en-us/library/system.printing.printticket.aspx

You can download Print Schema and XML Paper Specifications using the following link:

https://msdn.microsoft.com/en-us/library/windows/hardware/dn614032(v=vs.85).aspx

Windows has improved bidirectional printer communication (Bidi communication), starting with
Windows XP. This allows drivers and applications to make requests to, and get responses from, a
printer device. The following link explains more about Bidi printer communication:

https://msdn.microsoft.com/en-us/ff545157

The IBidiSpl interface allows an application to send a Bidi request to the printer. The following link
explains more about the IBidiSpl interface:

https://msdn.microsoft.com/en-us/library/dd144980

G-2 References

	Windows XPS Driver Software Development Kit Programmer's Reference Guide
	Table of Contents
	Chapter 1: Introduction
	Overview
	Installation

	Chapter 2: SDK Sample Code
	Sample Code
	Samples Included in the SDK
	Print Sample (Not Interactive)
	Magnetic Stripe Sample
	Bar Code Park Sample
	Smart Card Sample
	Single-Wire Smart Card Sample
	Single-Wire MIFARE Duali Classic Smart Card Sample
	Single-Wire Omnikey Smart Card Sample
	Lamination Sample
	Read and Verify Laminator Serialized Overlay Sample
	Emboss and Indent Sample
	Laser Sample
	Print Locking Sample
	Printer Control Sample
	Printer State Sample
	Status Sample

	Sample Code Location

	Developer Environments
	Printing
	Text Printing
	Raster Graphics Printing
	Vector Graphics Printing
	Topcoat and Print Blocking
	Controlling Card Printing Preferences
	Sample Code that Demonstrates Printing
	Get the Status of a Print Job

	Embossing
	Sample Code that Demonstrates Embossing

	Laminating
	Laminator Bar Code Read
	Sample Code that Demonstrates Laminating

	Laser Engraving
	Sample Code that Demonstrates Laser Engraving

	Chapter 3: Interactive Mode Using the IBidiSpl Interface
	Overview
	Interactive Operations
	Deprecated IBidiSpl Requests
	Order and Timing of Interactive Job Operations
	Determine the Success of an IBidiSpl Request
	Start and End an Interactive Job
	Sample Code

	Get the Status of an Interactive Job
	Sample Code

	Interactive Mode Error Recovery
	Error-Related Values in the Printer Status Structure
	Recovery from Errors
	Basic Error Recovery (Recommended)
	Advanced Error Recovery
	Cancel All Jobs
	Errors Cleared at the Printer
	Suppress the Driver Message Display

	Encode a Magnetic Stripe with Data
	Interactive Mode Magnetic Stripe Encoding
	Magnetic Stripe Track Data Format
	Sample Code—Magnetic Stripe Encode

	Read Data From a Magnetic Stripe
	Sample Code—Magnetic Stripe Read

	Place a Card in the Bar Code Reader
	Read Data from a Serialized Laminate Bar Code
	Sample Code—Serialized Laminate Bar Code Read

	Place a Card in the Smart Card Station
	Sample Code—Smart Card Park

	Personalize a Smart Card
	Printer.SmartCardUnit:SingleWire:Connect
	Smart Card Connect Request—Required Information
	Smart Card Connect Request—Return Values
	Smart Card Connect Request—Status Returned

	Printer.SmartCardUnit:SingleWire:Disconnect
	Smart Card Disconnect Request—Required Information
	Smart Card Disconnect Request—Return Values
	Smart Card Disconnect Request—Status Returned

	Printer.SmartCardUnit:SingleWire:Transmit
	Smart Card Transmit Request—Required Information
	Smart Card Transmit Request—Return Values
	Smart Card Transmit Request—Status Returned

	Printer.SmartCardUnit:SingleWire:Status
	Smart Card Status Request—Return Values
	Smart Card Status Request—Status Returned

	Printer.SmartCardUnit:SingleWire:GetAttrib
	Smart Card GetAttrib Request—Required Information
	Smart Card GetAttrib Request—Return Values
	Smart Card GetAttrib Request—Status Returned

	Sample Code—Single-Wire Smart Card Personalization
	Return Values from the Sample Code SCard Wrapper

	Read and Write Data to MIFARE Classic over Single-Wire
	Read and Writer Data to an Omnikey Reader over Single-Wire
	Application Responsibilities with Single-Wire Smart Card
	Laser Engraving
	Retrieve Laser Card Setup Files
	Retrieve Laser Elements in a Setup File
	Use the Laser Sample
	Import or Export Laser Setup Files

	Installed Printer Status, Supplies Status, and Counter Status
	Printer Status Information
	Printer Status
	Printer Information
	Message Number
	Printer Connection Information
	Printer Options
	Sample Code—Printer Status

	Supplies Information
	Sample Code—Supplies Status

	Card Counts
	Get Card Counts
	Status XML File for Single Input Hopper Printer
	Status XML for Six-Position Input Hopper Printer
	Reset Card Counts
	Sample Code—Card Counts

	Hopper Status
	Get Hopper Status
	Input Hopper Status XML File for a Retransfer Card Printer
	Input Hopper Status XML File for a Non-Retransfer Printer

	Locking
	Lock or Unlock the Printer
	Change the Lock/Unlock Password
	Password Rules

	Determine the Success of a Lock Request
	Sample Code—Locking

	Change Color Settings
	Change the Color Values
	Change One Color Channel
	Change Two Color Channels
	Set the Color Values to Default Settings
	Set All Color Channels to Default
	Set Two Color Channels to Default
	Sample Code—Color Adjust

	Change Color Values in Printer Manager or Printer Dashboard

	Activate or Deactivate the Printer
	Sample Code—Activate or Deactivate Printer

	Change the Printer State
	Sample Code—Change the Printer State

	Restart the Printer
	Sample Code—Restart Printer

	Shut Down the Printer
	Sample Code—Shut Down Printer

	Interactive Mode Best Practices

	Appendix A: Error Description Strings
	Appendix B: Use Eclipse to Create Java Samples
	Extract the SDK Files
	Create an Eclipse Workspace
	Build the common_java JAR File
	Create Runnable JAR Files for Each Java Sample
	Run the JAR File
	Troubleshooting
	Recommendations

	Appendix C: Use the SDK Java Samples
	Overview
	Use the Java Samples

	Appendix D: Suppress the Driver Message Display
	Enable Driver Silent Mode
	Silent Mode Operation Notes

	Appendix E: SDK CE870 Kiosk System Support
	Overview
	Retrieve the Status of a Kiosk Job

	Appendix F: Print a UV Photo
	Appendix G: References

